REPORT NUMBER: 208-MGA-2009-013

VEHICLE SAFETY COMPLIANCE TESTING
FOR
FMVSS 208, OCCUPANT CRASH PROTECTION
FMVSS 212, WINDSHIELD MOUNTING
FMVSS 219, WINDSHIELD INTRUSION (PARTIAL)
FMVSS 301, FUEL SYSTEM INTEGRITY

BAYERISCHE MOTORENWERKE
2009 BMW 128I COUPE PASSENGER CAR
NHTSA NO.: C90514

PREPARED BY:
MGA RESEARCH CORPORATION
5000 WARREN ROAD
BURLINGTON, WI 53105

TEST DATES: MARCH 12, 2009 – MAY 8, 2009
FINAL REPORT DATE: JULY 22, 2010

FINAL REPORT

PREPARED FOR:
U.S. DEPARTMENT OF TRANSPORTATION
NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
OFFICE OF ENFORCEMENT
OFFICE OF VEHICLE SAFETY COMPLIANCE
1200 NEW JERSEY AVENUE, S.E., NVS-220
WASHINGTON, D.C. 20590
This final test report was prepared for the U.S. Department of Transportation, National Highway Traffic Safety Administration, in response to Contract Number DTNH22-08-D-00086.

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers’ names or products are mentioned it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Prepared by: Date: July 22, 2010
Jeff Lewandowski, Project Engineer

Reviewed by: Date: July 22, 2010
David Winkelbauer, Facility Director

FINAL REPORT ACCEPTED BY OVSC:

Accepted By:
Acceptance Date: July 22, 2010
Compliance tests were conducted on the subject 2009 BMW 128i Coupe in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP208-14 for the determination of FMVSS 208 compliance. Test failures identified were as follows:

TEST FAILURES:

The sun visor airbag warning label has an area of 27.7 cm². (S4.5.1(b)(3)(ii)) The message area shall be white with black text. The message area shall be no less than 30 cm² (4.7 in²).
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Purpose of Compliance Tests</td>
<td>1</td>
</tr>
<tr>
<td>2 Tests Performed</td>
<td>2</td>
</tr>
<tr>
<td>3 Injury Result Summary for FMVSS 208 Tests</td>
<td>4</td>
</tr>
<tr>
<td>4 Discussion of Tests (if applicable)</td>
<td>8</td>
</tr>
<tr>
<td>5 Test Data Sheets</td>
<td>9</td>
</tr>
</tbody>
</table>

Data Sheet

<table>
<thead>
<tr>
<th>Data Sheet</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 COTR Vehicle Work Order</td>
<td>10</td>
</tr>
<tr>
<td>2 Report of Vehicle Condition</td>
<td>14</td>
</tr>
<tr>
<td>3 Certification Label and Tire Placard Information</td>
<td>16</td>
</tr>
<tr>
<td>4 Rear Seating Position Seat Belts</td>
<td>17</td>
</tr>
<tr>
<td>5 Air Bag Labels</td>
<td>18</td>
</tr>
<tr>
<td>6 FMVSS 208 Readiness Indicator</td>
<td>26</td>
</tr>
<tr>
<td>7 Passenger Air Bag Manual Cut-Off Device</td>
<td>27</td>
</tr>
<tr>
<td>8 Lap Belt Lockability</td>
<td>29</td>
</tr>
<tr>
<td>9 FMVSS 208 Seat Belt Warning System Check</td>
<td>36</td>
</tr>
<tr>
<td>10 Belt Contact Force</td>
<td>37</td>
</tr>
<tr>
<td>11 Latch Plate Access</td>
<td>41</td>
</tr>
<tr>
<td>12 Seat Belt Retraction</td>
<td>44</td>
</tr>
<tr>
<td>13 Seat Belt Guides and Hardware</td>
<td>46</td>
</tr>
<tr>
<td>16 Air Bag Suppression Telltale</td>
<td>48</td>
</tr>
<tr>
<td>17 Suppression Test Using 12-Month CRABI Dummy</td>
<td>49</td>
</tr>
<tr>
<td>18 Suppression Test Using Newborn Infant Dummy</td>
<td>56</td>
</tr>
<tr>
<td>25 Summary of Low Risk Deployment Using an Unbelted 3-YO Dummy Position 1</td>
<td>57</td>
</tr>
<tr>
<td>26 Summary of Low Risk Deployment Using an Unbelted 3-YO Dummy Position 2</td>
<td>58</td>
</tr>
<tr>
<td>27 Summary of Low Risk Deployment Using an Unbelted 6-YO Dummy Position 1</td>
<td>59</td>
</tr>
<tr>
<td>28 Summary of Low Risk Deployment Using an Unbelted 6-YO Dummy Position 2</td>
<td>60</td>
</tr>
<tr>
<td>29 Summary of Low Risk Deployment Using an Unbelted 5th% Dummy Position 1</td>
<td>61</td>
</tr>
<tr>
<td>30 Summary of Low Risk Deployment Using an Unbelted 5th% Dummy Position 2</td>
<td>62</td>
</tr>
<tr>
<td>32 Vehicle Weight, Fuel Tank, and Attitude Data</td>
<td>63</td>
</tr>
<tr>
<td>33 Vehicle Accelerometer Locations and Measurements</td>
<td>66</td>
</tr>
<tr>
<td>34 Photographic Targets</td>
<td>69</td>
</tr>
<tr>
<td>35 Camera Locations</td>
<td>74</td>
</tr>
<tr>
<td>Data Sheet</td>
<td>Page No</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>36 Dummy Positioning</td>
<td>76</td>
</tr>
<tr>
<td>37 Dummy Measurements</td>
<td>92</td>
</tr>
<tr>
<td>38 Crash Test</td>
<td>95</td>
</tr>
<tr>
<td>40 Accident Investigation Measurements</td>
<td>96</td>
</tr>
<tr>
<td>41 Windshield Mounting (FMVSS 212)</td>
<td>98</td>
</tr>
<tr>
<td>42 Windshield Zone Intrusion (FMVSS 219)</td>
<td>100</td>
</tr>
<tr>
<td>43 Fuel System Integrity (FMVSS 301)</td>
<td>102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Crash Test Data</td>
<td>A-1</td>
</tr>
<tr>
<td>B Low Risk Test Data</td>
<td>B-1</td>
</tr>
<tr>
<td>C Crash Test Photographs</td>
<td>C-1</td>
</tr>
<tr>
<td>D Low Risk Photographs</td>
<td>D-1</td>
</tr>
<tr>
<td>E Suppression Photographs</td>
<td>E-1</td>
</tr>
<tr>
<td>F Instrumentation Calibration</td>
<td>F-1</td>
</tr>
<tr>
<td>G Notice of Test Failure (If Applicable)</td>
<td>G-1</td>
</tr>
</tbody>
</table>
SECTION 1
PURPOSE OF COMPLIANCE TESTS

This Federal Motor Vehicle Safety Standard 208 compliance test is part of a program conducted for the National Highway Traffic Safety Administration (NHTSA) by MGA Research Corporation (MGA) under Contract No.: DTNH22-08-D-00086. The purpose of this test was to determine whether the subject vehicle, a 2009 BMW 128i Coupe, NHTSA No.: C90514, meets certain performance requirements of FMVSS 208, "Occupant Crash Protection"; FMVSS 212, "Windshield Mounting"; FMVSS 219, "Windshield Zone Intrusion"; and FMVSS 301, "Fuel System Integrity". The compliance test was conducted in accordance with OVSC Laboratory Test Procedure No.: TP208-14 dated April 16, 2008.
SECTION 2
TESTS PERFORMED

Test Vehicle: 2009 BMW 128i Coupe
Test Program: FMVSS 208 Compliance
NHTSA No.: C90514
Test Dates: 3/12/09 - 5/8/09

The following checked items indicate the tests that were performed:

1. Rear seating position seat belts
2. Air bag labels (S4.5.1)
3. Readiness indicator (S4.5.2)
4. Passenger air bag manual cut-off device (S4.5.4)
5. Lap belt lockability (S7.1.1.5)
6. Seat belt warning system (S7.3)
7. Seat belt contact force (S7.4.3)
8. Seat belt latch plate access (S7.4.4)
9. Seat belt retraction (S7.4.5)
10. Seat belt guides and hardware (S7.4.6)
11. Air bag suppression telltale (S19.2.2)
12. Suppression tests with 12-month-old CRABI dummy (Part 572, Subpart R)
13. Suppression tests with Newborn infant (Part 572, Subpart K)
14. Suppression tests with 3-year-old dummy (Part 572, Subpart P)
15. Suppression tests with 6-year-old dummy (Part 572, Subpart N)
16. Test of Reactivation of the passenger air bag system with an unbelted 5th percentile female human subject.
17. Low risk deployment test with 12-month-old dummy (Part 572, Subpart R)
18. Low risk deployment test with 3-year-old dummy (Part 572, Subpart P)
19. Low risk deployment test with 6-year-old dummy (Part 572, Subpart N)
20. Low risk deployment test with 5th female dummy (Part 572, Subpart O)
21. Impact Tests

Frontal Oblique
- Belted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.1(a))
- Unbelted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.2(a)(1))
- Unbelted 50th male dummy driver and passenger (32 to 40 kmph) (S5.1.2(a)(1) or S5.1.2(b))

Frontal 0°
- Belted 50th male dummy driver (0 to 48 kmph) (S5.1.1.(b)(1) or S5.1.1(a))
- Belted 50th male dummy passenger (0 to 48 kmph) (S5.1.1.(b)(1) or S5.1.1(a))
- Belted 5th female dummy driver (0 to 48 kmph) (S16.1(a))
- Belted 5th female dummy passenger (0 to 48 kmph) (S16.1(a))
- Belted 50th male dummy driver and passenger (0 to 56 kmph) (S5.1.1.(b)(2))
- Unbelted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.2(a) (1))
- Unbelted 50th male dummy driver (32 to 40 kmph) (S5.1.2.(a)(2) or S5.1.2(b))
- Unbelted 50th male dummy passenger (32 to 40 kmph) (S5.1.2.(a)(2) or S5.1.2(b))
- Unbelted 5th female dummy driver (32 to 40 kmph) (S16.1(b))
- Unbelted 5th female dummy passenger (32 to 40 kmph) (S16.1(b))
40% Offset 0° Belted 5th female dummy driver and passenger (0 to 40 kmph) (S18.1)

22. FMVSS 204 Indicant Test
23. FMVSS 212 Test
24. FMVSS 219 Indicant Test
25. FMVSS 301 Frontal Test

For the crash tests, the vehicle was instrumented with 8 accelerometers. The accelerometer data from the vehicle and dummies were sampled at 10,000 samples per second and processed as specified in SAE J211/1 MAR95 and FMVSS 208, S4.13.

The dynamic tests were recorded using high-speed digital video.

The vehicle does not appear to meet all of the performance requirements to which it was tested:
- The sun visor airbag warning label has an area of 27.7 cm². (S4.5.1(b)(3)(ii)) The message area shall be white with black text. The message area shall be no less than 30 cm² (4.7 in²).
5th Percentile Female Low Risk Deployments

5th Percentile Female SN 124 Position 1 (Chin On Module) 4/22/09

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>19</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>73.0</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>11.8</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>3.1</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>1.1</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>808</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>5</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>12</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>8</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>51</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>54</td>
</tr>
</tbody>
</table>

Second stage fire time of 60 ms; Injuries calculated on 0 ms to 185 ms

5th Percentile Female SN 124 Position 2 (Chin On Rim) 4/22/09

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>27</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>29.9</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>55.1</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>6.2</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>61.3</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>733</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>181</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>21</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>17</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>23</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>15</td>
</tr>
</tbody>
</table>

Second stage fire time of 60 ms; Injuries calculated on 0 ms to 185 ms
3-Year-Old Low Risk Deployments

3-Year-Old SN 032 Position 1 (Chest On Instrument Panel) 4/22/09

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>570</td>
<td>51</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>37.9</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>14.6</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>10.4</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>10.9</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1130 N</td>
<td>532</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1380 N</td>
<td>7</td>
</tr>
<tr>
<td>Chest g</td>
<td>55 g</td>
<td>11</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>34 mm</td>
<td>3</td>
</tr>
</tbody>
</table>

Second stage fire time of 240 ms; Injuries calculated on 0 ms to 100 ms

3-Year-Old SN 032 Position 2 (Head On Instrument Panel) 4/23/09

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>570</td>
<td>30</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>59.4</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>18.5</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>9.4</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>13.0</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1130 N</td>
<td>141</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1380 N</td>
<td>267</td>
</tr>
<tr>
<td>Chest g</td>
<td>55 g</td>
<td>7</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>34 mm</td>
<td>1</td>
</tr>
</tbody>
</table>

Second stage fire time of 240 ms; Injuries calculated on 0 ms to 100 ms
SECTION 3

INJURY RESULT SUMMARY FOR FMVSS 208 TESTS

Test Vehicle: 2009 BMW 128i Coupe
Test Program: FMVSS 208 Compliance
NHTSA No.: C90514
Test Dates: 4/23/09

6-Year-Old Low Risk Deployments

6-Year-Old SN 155 Position 1 (Chest On Instrument Panel) 4/23/09

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>22</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>74.1</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>18.9</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>0.3</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>11.2</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1490 N</td>
<td>450</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1820 N</td>
<td>11</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>7</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>40 mm</td>
<td>2</td>
</tr>
</tbody>
</table>

Second stage fire time of 240 ms; Injuries calculated on 0 ms to 100 ms

6-Year-Old SN 155 Position 2 (Head On Instrument Panel) 4/23/09

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>125</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>33.3</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>22.7</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>7.3</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>15.4</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1490 N</td>
<td>544</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1820 N</td>
<td>586</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>10</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>40 mm</td>
<td>2</td>
</tr>
</tbody>
</table>

Second stage fire time of 240 ms; Injuries calculated on 0 ms to 100 ms
SECTION 3

INJURY RESULT SUMMARY FOR FMVSS 208 TESTS

Test Vehicle: 2009 BMW 128i Coupe
NHTSA No.: C90514
Test Program: FMVSS 208 Compliance
Test Date: 5/8/09

48 kmph Frontal Crash

Impact Angle: Zero degrees

Belted Dummies: Yes
X No

Speed Range: 0 to 40 kmph
32 to 40 kmph
0 to 48 kmph
0 to 56 kmph

Test Speed: 39.8 kmph
Test Weight: 1646.5 kg

Driver Dummy: 5th female
50th male
X 5th female

Passenger Dummy: 5th female
50th male
X 5th female

5th Percentile Female Frontal Crash Test

Vehicles certified to S16.1(a)(1), S16.1(a)(2), S16.1(b), or S18.1

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Driver</th>
<th>Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>71</td>
<td>44</td>
</tr>
<tr>
<td>N_{te}</td>
<td>1.0</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>N_{td}</td>
<td>1.0</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>N_{nc}</td>
<td>1.0</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td>N_{nf}</td>
<td>1.0</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2620 N</td>
<td>1077</td>
<td>539</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>90</td>
<td>400</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>21</td>
<td>8</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>3562</td>
<td>4366</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>4211</td>
<td>3761</td>
</tr>
</tbody>
</table>
SECTION 4
DISCUSSION OF TESTS

Test Vehicle: 2009 BMW 128i Coupe NHTSA No.: C90514
Test Program: FMVSS 208 Compliance Test Dates: 3/12/09 - 5/8/09

The sun visor airbag warning label has an area of 27.7 cm². (S4.5.1(b)(3)(ii)) The message area shall be white with black text. The message area shall be no less than 30 cm² (4.7 in²).

A blanket and visor were not used in the suppression testing because they did not affect the sensing system used on the vehicle.

There was no valid data after 85 msec on the Left Rear Seat Crossmember (X) accelerometer during the frontal impact crash test.

There was no valid data after 100 msec on the Instrument Panel (X) accelerometer during the frontal impact crash test.
SECTION 5
TEST DATA SHEETS

<table>
<thead>
<tr>
<th>Test Vehicle</th>
<th>2009 BMW 128i Coupe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program</td>
<td>FMVSS 208 Compliance</td>
</tr>
<tr>
<td>NHTSA No.</td>
<td>C90514</td>
</tr>
<tr>
<td>Test Dates</td>
<td>3/12/09 - 5/8/09</td>
</tr>
</tbody>
</table>
COTR Signature: Brian Smith

Test to be performed for this vehicle are checked below:

1. Rear Seating Position Seat Belts
2. Air Bag Labels (S4.5.1)
3. Readiness Indicator (S4.5.2)
4. Passenger Air Bag Manual Cut-off Device (S4.5.4)
5. Lap Belt Lockability (S7.1.1.5)
6. Seat Belt Warning System (S7.3)
7. Seat Belt Contact Force (S7.4.3)
8. Seat Belt Latch Plate Access (S7.4.4)
9. Seat Belt Retraction (S7.4.5)
10. Seat Belt Guides and Hardware (S7.4.6)
11. Air bag suppression telltale (S19.2.2)
12. Suppression tests with 12-month-old CRABI dummy (Part 572, Subpart R) using the following indicated child restraints (mid-height seat position):
 - Section B – Rear Facing (unbelted and belted rear facing, unbelted forward facing)
 - Britax Handle with Care 191
 - Century Assura 4553
 - Century Smart Fit 4543
 - Cosco Arriva 02727
 - Cosco Opus 35 02603
 - Evenflo Discovery Adjust Right 212
 - Evenflo First Choice 204
 - Graco Infant 8457
 - Section C – Convertible (unbelted and belted rear facing, unbelted and belted forward facing)
 - Britax Roundabou 161
 - Century Encore 4612
 - Century STE 1000 4416
 - Cosco Olympian 02803
 - Cosco Touriva 02519
 - Evenflo Horizon V 425
 - Evenflo Medallion 254
13. Suppression tests with newborn infant (Part 572, Subpart K) using the following indicated child restraints (mid-height seat position).
 - Section A – Car Bed (Belted)
 - Cosco Dream Ride 02-719
14. Suppression tests with 3-year-old dummy (Part 572, Subpart P) using the following indicated child restraints where a child restraint is required (mid-height seat position):
15. Suppression tests with representative 3-year-old child using the following indicated child restraints where a child restraint is required (mid-height position). (Appendix H, Data Sheet 19H and 20H)

Section C – Convertible (Belted forward-facing)

<table>
<thead>
<tr>
<th>Child Restraint</th>
<th>Rearward Position</th>
<th>Mid Position</th>
<th>Forward Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Britax Roundabout 161</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Century Encore 4612</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Century STE 1000 4416</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Cosco Olympian 02803</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Cosco Touriva 02519</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Evenflo Horizon V 425</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Evenflo Medallion 254</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
</tbody>
</table>

Section D – Toddler/Belt Positioning Booster (Belted)

<table>
<thead>
<tr>
<th>Child Restraint</th>
<th>Rearward Position</th>
<th>Mid Position</th>
<th>Forward Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Britax Roadster 9004</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Century Next Step 4920</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Cosco High Back Booster 02-442</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Evenflo Right Fit 245</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
</tbody>
</table>

16. Suppression tests with 3-year-old dummy (Part 572, Subpart P) in the following positions (mid-height seat position):

<table>
<thead>
<tr>
<th>Position</th>
<th>Rearward Position</th>
<th>Mid Position</th>
<th>Forward Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitting on seat with back against seat back</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Sitting on seat with back against reclined seat back</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Sitting on seat with back not against seat back</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Sitting on seat edge, spine vertical, hands by the child’s side</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Standing on seat, facing forward</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Kneeling on seat facing forward</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Kneeling on seat facing rearward</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
<tr>
<td>Lying on seat</td>
<td>Full</td>
<td>Mid</td>
<td>Full</td>
</tr>
</tbody>
</table>
17. Suppression tests with representative 3-year-old child in the following positions (mid-height seat position):

- Sitting on seat with back against seat back (S22.2.2.1)
 - Full Rearward
 - Mid Position
 - Full Forward
- Sitting on seat with back against reclined seat back (S22.2.2.2)
 - Full Rearward
 - Mid Position
 - Full Forward
- Sitting on seat with back not against seat back (S22.2.2.3)
 - Full Rearward
 - Mid Position
 - Full Forward
- Sitting on seat edge, spine vertical, hands by the child’s side (S22.2.2.4)
 - Full Rearward
 - Mid Position
 - Full Forward
- Standing on seat, facing forward (S22.2.2.5)
 - Full Rearward
 - Mid Position
 - Full Forward
- Kneeling on seat facing forward (S22.2.2.6)
 - Full Rearward
 - Mid Position
 - Full Forward
- Kneeling on seat facing rearward (S22.2.2.7)
 - Full Rearward
 - Mid Position
 - Full Forward
- Lying on seat (S22.2.2.8)
 - Full Rearward
 - Mid Position
 - Full Forward

18. Suppression tests with 6-year-old dummy (Part 572, Subpart N) using the following indicated child restraints where a child restraint is required (mid-height seat position):

Section D

- Britax Roadster 9004
 - Full Rearward
 - Mid Position
 - Full Forward
- Century Next Step 4920
 - Full Rearward
 - Mid Position
 - Full Forward
- Cosco High Back Booster 02-442
 - Full Rearward
 - Mid Position
 - Full Forward
- Evenflo Right Fit 245
 - Full Rearward
 - Mid Position
 - Full Forward

19. Suppression tests with representative 6-year-old child using the following indicated child restraints where a child restraint is required (mid-height seat position):

Section D

- Britax Roadster 9004
 - Full Rearward
 - Mid Position
 - Full Forward
- Century Next Step 4920
 - Full Rearward
 - Mid Position
 - Full Forward
- Cosco High Back Booster 02-442
 - Full Rearward
 - Mid Position
 - Full Forward
- Evenflo Right Fit 245
 - Full Rearward
 - Mid Position
 - Full Forward

20. Suppression tests with 6-year-old dummy (Part 572, Subpart N) in the following positions (mid-height seat position):

- Sitting on seat with back against seat back (S22.2.2.1)
 - Full Rearward
 - Mid Position
 - Full Forward
- Sitting on seat with back against reclined seat back (S22.2.2.2)
 - Full Rearward
 - Mid Position
 - Full Forward
- Sitting on seat edge, spine vertical, hands by the child’s side (S22.2.2.4)
 - Full Rearward
 - Mid Position
 - Full Forward
- Sitting back in the seat and leaning on the right front passenger door (S24.2.3)
 - Full Rearward
 - Mid Position
 - Full Forward

21. Suppression tests with representative 6-year-old child in the following positions (mid-height seat position):

- Sitting on seat with back against seat back (S22.2.2.1)
 - Full Rearward
 - Mid Position
 - Full Forward
- Sitting on seat with back against reclined seat back (S22.2.2.2)
 - Full Rearward
 - Mid Position
 - Full Forward
- Sitting on seat edge, spine vertical, hands by the child’s side (S22.2.2.4)
 - Full Rearward
 - Mid Position
 - Full Forward
- Sitting back in the seat and leaning on the right front passenger door (S24.2.3)
 - Full Rearward
 - Mid Position
 - Full Forward

22. Test of Reactivation of the Passenger Air Bag System with an Unbelted 5th percentile female dummy (S20.3, 22.3, S24.3) (mid-height seat position). Perform this test after the following suppression tests:
23. Test of Reactivation of the Passenger Air Bag System with a representative 5th percentile female (S20.3, 22.3, S24.3) (mid-height seat position). Perform this test after the following suppression tests: After each restraint.

24. Low risk deployment test with 12-month-old dummy (Part 572, Subpart R) using the following indicated child restraints (full forward, mid-height seat position)(S20.4):

Section B
- Britax Handle with Care 191
- Century Assura 4553
- Century Smart Fit 4543
- Cosco Arriva 02727
- Evenflo Discovery Adjust Right 212
- Evenflo First Choice 204
- Graco Infant 8457

Section C
- Britax Roundabout 161
- Century Encore 4612
- Century STE 1000 4416
- Cosco Olympian 02803
- Cosco Touriva 02519
- Evenflo Horizon V 425
- Evenflo Medallion 254

25. Low risk deployment test with 3-year-old dummy (Part 572, Subpart P) in the following positions:
- Position 1 (rearmost, lowest seat position)
- Position 2 (mid-height seat position)

26. Low risk deployment test with 6-year-old dummy (Part 572, Subpart N) in the following positions:
- Position 1 (rearmost, lowest seat position)
- Position 2 (mid-height seat position)

27. Low risk deployment test with 5th female dummy (Part 572, Subpart O) in the following positions:
- Position 1 (mid-height seat position)
- Position 2 (mid-height seat position)

28. Impact Tests

Frontal Oblique	Impact Angle:	Test Speed:
Belted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.1(a))
Unbelted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.2(a)(1))
Unbelted 50th male dummy driver and passenger (32 to 40 kmph) (S5.1.2(a)(2) or S5.1.2(b))

Frontal 0° - Test Speed: 39.8 kmph

Belted 50th male dummy driver (0 to 48 kmph) (S5.1.1.(b)(1) or S5.1.1(a))

Belted 50th male dummy passenger (0 to 48 kmph) (S5.1.1.(b)(1) or S5.1.1(a))

Belted 5th female dummy driver (0 to 48 kmph) (S16.1(a)(1))

Belted 5th female dummy passenger (0 to 48 kmph) (S16.1(a)(1))

Belted 5th female dummy driver and passenger (0 to 56 kmph) (S16.1(a)(2))

Belted 50th male dummy driver and passenger (0 to 56 kmph) (S5.1.1.(b)(2))

Unbelted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.2(a) (1))

Unbelted 50th male dummy driver (32 to 40 kmph) (S5.1.2.(a)(2) or S5.1.2(b))

Unbelted 50th male dummy driver and passenger (32 to 40 kmph) (S5.1.2.(a)(2) or S5.1.2(b))

X Unbelted 5th female dummy driver (32 to 40 kmph) (S16.1(b))

X Unbelted 5th female dummy passenger (32 to 40 kmph) (S16.1(b))

40% Offset 0° Belted 5th female dummy driver and passenger (0 to 40 kmph) (S18.1) Test Speed:

29. FMVSS 204 Indicant Test

X 30. FMVSS 212 Test

X 31. FMVSS 219 Indicant Test

X 32. FMVSS 301 Frontal Test
DATA SHEET 2
REPORT OF VEHICLE CONDITION

Test Vehicle: 2009 BMW 128i Coupe
NHTSA No.: C90514
Test Program: FMVSS 208 Compliance
Test Dates: 3/12/09-5/8/09

CONTRACT NO.: DTNH22-08-D-00086
Date: 5/15/09
FROM (Lab and rep name): MGA Research Corporation
TO: NHTSA, OVSC, NVS-220

PURPOSE: (X) Initial Receipt () Received via Transfer (X) Present vehicle condition

MODEL YEAR/MAKE/MODEL/BODY STYLE: 2009 BMW 128i Coupe 4 Door
MANUFACTURE DATE: 10/08
NHTSA NO. C90514
GVWR: 1875 kg (4134 lbs)
BODY COLOR: Jet Black
GAWR (Fr): 920 kg (2028 lbs)
VIN: WBAUP73549VF06881
GAWR (Rr): 1020 kg (2249 lbs)

ODOMETER READINGS: ARRIVAL (miles): 49
DATE: 2/18/09
COMPLETION (miles): 68
DATE: 5/8/09
PURCHASE PRICE: ($) 29,900.90
DEALER’S NAME: Anderson Motor Co. – 360 North Route 31, Crystal Lake, IL 60039

A. All options listed on window sticker are present on the test vehicle:
 X Yes ___No
B. Tires and wheel rims are new and the same as listed: _X_ Yes ___No
C. There are no dents or other interior or exterior flaws: _X_ Yes ___No
D. The vehicle has been properly prepared and is in running condition:
 X Yes ___No
E. Keyless remote is available and working: _X_ Yes ___No
F. The glove box contains an owner’s manual, warranty document, consumer information, and extra set of keys:
 X Yes ___No
G. Proper fuel filler cap is supplied on the test vehicle: _X_ Yes ___No
H. Using permanent marker, identify vehicle with NHTSA number and FMVSS test type(s) on roof line above driver door or for school buses, place a placard with NHTSA number inside the windshield and to the exterior front and rear side of bus:
 X Yes ___No
I. Place vehicle in storage area: _X_ Yes ___No
J. Inspect the vehicle’s interior and exterior, including all windows, seats, doors, etc. to confirm that each system is complete and functional per the manufacturer’s specifications. Any damage, misadjustment, or other unusual condition that could influence the test program or test results shall be recorded. Report any abnormal condition to the NHTSA COTR before beginning any test:
 X Vehicle OK ___Conditions reported below in comment section

Identify the letter above to which any of the following comments apply.
Comments:___
__

Test Vehicle: 2009 BMW 128i Coupe
Test Program: FMVSS 208 Compliance
NHTSA No.: C90514
Test Dates: 3/12/09-5/8/09
REPORT OF VEHICLE CONDITION AT THE COMPLETION OF TESTING

LIST OF FMVSS TESTS PERFORMED BY THIS LAB: FMVSS 208, 212, 219, 301
VEHICLE: 2009 BMW 128i Coupe NHTSA NO.: C90514

REMARKS:

Equipment that is no longer on the test vehicle as noted on previous page:
Right Hand Rear Tail Light

Explanation for equipment removal:
Components removed for instrumentation installation and to meet target weight.

Test Vehicle Condition:
25 mph frontal impact damage- front suspension & structure damaged, hood & front quarter panels damaged, radiator damaged, air bags & pretensioners deployed, Stoddard in fuel system

RECORDED BY: Jeff Lewandowski DATE: 5/15/2009
APPROVED BY: David Winkelbauer DATE: 5/15/2009

RELEASE OF TEST VEHICLE

The vehicle described above is released from MGA to be delivered to:

Date: Time: Odometer:

Lab Rep’s Signature: Title:
Carrier/Customer Rep: Date:
DATA SHEET 3
CERTIFICATION LABEL AND TIRE PLACARD INFORMATION

Test Vehicle: 2009 BMW 128i Coupe NHTSA No.: C90514
Test Program: FMVSS 208 Compliance Test Date: 5/8/09
Test Technician: Jamie Aide

<table>
<thead>
<tr>
<th>Certification Label (Part 567)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer: BAYERISCHE MOTORENWERKE</td>
</tr>
<tr>
<td>Date of Manufacture: 10/08</td>
</tr>
<tr>
<td>VIN: WBAUP73549VF06881</td>
</tr>
<tr>
<td>Vehicle Certified As (Pass. Car/MPV/Truck/Bus):</td>
</tr>
<tr>
<td>Passenger Car</td>
</tr>
<tr>
<td>Front Axle GVWR: 920 kg (2028 lbs)</td>
</tr>
<tr>
<td>Rear Axle GVWR: 1020 kg (2249 lbs)</td>
</tr>
<tr>
<td>Total GVWR: 1875 kg (4134 lbs)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tire Placard for Motor Vehicles with GVWR of 10,000 lb or Less and Passenger Cars (571.110)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Capacity Weight: 400 kg (882 lbs)</td>
</tr>
<tr>
<td>Designated Seating Capacity Front: 2</td>
</tr>
<tr>
<td>Designated Seating Capacity Rear: 2</td>
</tr>
<tr>
<td>Total Designated Seating Capacity: 4</td>
</tr>
<tr>
<td>Recommended Cold Tire Inflation Pressure Front: 220 kpa (32 psi)</td>
</tr>
<tr>
<td>Recommended Cold Tire Inflation Pressure Rear: 240 kpa (35 psi)</td>
</tr>
<tr>
<td>Recommended Tire Size: 205/50R17</td>
</tr>
<tr>
<td>Tire Size on Vehicle: 205/50R17</td>
</tr>
</tbody>
</table>

Signature: Jamie Aide Date: 5/8/09
DATA SHEET 4
REAR SEATING POSITION SEAT BELTS

<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2009 BMW 128i Coupe</th>
<th>NHTSA No.:</th>
<th>C90514</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program:</td>
<td>FMVSS 208 Compliance</td>
<td>Test Date:</td>
<td>3/12/09</td>
</tr>
<tr>
<td>Test Technician:</td>
<td>Wayne Dahlke</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Do all rear seating positions have Type 2 seat belts?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If NO, describe the seat belt installed, the seat location, and any other information about the seat that would explain why a Type 2 seat belt was not installed.

REMARKS:

Signature: Wayne Dahlke

Date: 3/12/09
DATA SHEET 5
AIR BAG LABELS (S4.5.1)

Test Vehicle: 2009 BMW 128i Coupe
Test Program: FMVSS 208 Compliance
Test Technician: Wayne Dahlke
NHTSA No.: C90514
Test Date: 3/12/09

1. Air Bag Maintenance Label and Owner’s Manual Instructions: (S4.5.1(a))
 1.1 Does the manufacturer recommend periodic maintenance or replacement of the air bag?
 [] Yes (Go to 1.2)
 [X] No (Go to 2)

1.2 Does the vehicle have a label specifying air bag maintenance or replacement?
 [] Yes – Pass
 [] No – Fail

1.3 Does the label contain one of the following?
 [] Yes – Pass
 [] No – Fail

 Check applicable schedule:
 __ Schedule on label specifies month and year (Record date______)
 __ Schedule on label specifies vehicle mileage (Record mileage______)
 __ Schedule on label specifies interval measured from date on certification label
 (Record interval______)

1.4 Is the label permanently affixed within the passenger compartment such that it cannot
 be removed without destroying or defacing the label or vehicle part? (3/19/01 legal
 interpretation to Todd Mitchell)
 [] Yes – Pass
 [] No – Fail

1.5 Is the label lettered in English?
 [] Yes – Pass
 [] No – Fail

1.6 Is the label in block capitals and numerals?
 [] Yes – Pass
 [] No – Fail

1.7 Are the letters and numerals at least 3/32 inches high?
 [] Yes – Pass
 [] No – Fail

1.8 Does the owner’s manual set forth the recommended schedule for maintenance or
 replacement?
 [X] Yes – Pass
 [] No – Fail

2. Does the owner’s manual: (S4.5.1(f))
 2.1 Include a description of the vehicle’s air bag system in an easily understandable format?
 [X] Yes – Pass
 [] No – Fail

 2.2 Include a statement that the vehicle is equipped with an air bag and a lap/shoulder
 belt at the front outboard seating position?
 [X] Yes – Pass
 [] No – Fail

 2.3 Include a statement that the air bag is a supplemental restraint at the front outboard
 seating position?
 [X] Yes – Pass
 [] No – Fail
2.4 Emphasize that all occupants, including the driver, should always wear their seat belts whether or not an air bag is also provided at their seating positions to minimize the risk of severe injury or death in the event of a crash?
 X Yes – Pass
 No – Fail

2.5 Provide any necessary precautions regarding the proper positioning of occupants, including children, at seating positions equipped with air bags to ensure maximum safety protection for those occupants?
 X Yes – Pass
 No – Fail

2.6 Explain that no objects should be placed over or near the air bag on the steering wheel or on the instrument panel, because any such objects could cause harm if the vehicle is in a crash severe enough to cause the air bag to inflate?
 X Yes – Pass
 No – Fail

2.7 Is the vehicle certified to meet the requirements of S14.5, S15, S17, S19, S21, S23, and S25? (Obtain answer to this question from the COTR) (S4.5.1(f)(2))
 X Yes – (Go to 2.7.1)
 No – (Go to 3.)

2.7.1 Explain the proper functioning of the advanced air bag system? (S4.5.1(f)(2))
 X Yes – Pass
 No – Fail

2.7.2 Provide a summary of the actions that may affect the proper functioning of the system? (S4.5.1(f)(2))
 X Yes – Pass
 No – Fail

2.7.3 Present and explain the main components of the advanced passenger air bag system? (S4.5.1(f)(2)(i))
 X Yes – Pass
 No – Fail

2.7.4 Explain how the components function together as part of the advanced passenger air bag system? (S4.5.1(f)(2)(ii))
 X Yes – Pass
 No – Fail

2.7.5 Contain the basic requirements for proper operation, including an explanation of the actions that may affect the proper functioning of the system? (S4.5.1(f)(2)(iii))
 X Yes – Pass
 No – Fail

2.7.6 Is the vehicle certified to the requirements of S19.2, S21.2, or 23.2 (automatic suppression)?
 X Yes, continue with 2.7.6
 No, go to 2.7.7

2.7.6.1 Contain a complete description of the passenger air bag suppression system installed in the vehicle, including a discussion of any suppression zone? (S4.5.1(f)(2)(iv))
 X Yes – Pass
 No – Fail

2.7.6.2 Discuss the telltale light, specifying its location in the vehicle and explaining when the light is illuminated?
 X Yes – Pass
 No – Fail
2.7.7 Explain the interaction of the advanced passenger air bag system with other vehicle components, such as seat belts, seats or other components? (S4.5.1(f)(2)(v))

- Yes – Pass
- No – Fail

2.7.8 Summarize the expected outcomes when child restraint systems, children and small teenagers or adults are both properly and improperly positioned in the passenger seat, including cautionary advice against improper placement of child restraint systems? (S4.5.1(f)(2)(vi))

- Yes – Pass
- No – Fail

2.7.9 Provide information on how to contact the vehicle manufacturer concerning modifications for persons with disabilities that may affect the advanced air bag system? (S4.5.1(f)(2)(vii))

- Yes – Pass
- No – Fail

3. Sun Visor Air Bag Warning Label (S4.5.1(b)): Vehicles certified to meet the requirements of S19, S21 and S23. (S4.5.1(b)(3))

- Is the label permanently affixed (including permanent marking on the visor material or molding into the visor material) to either side of the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing the label or the sun visor? (S4.5.1(b)(3)) (3/19/01 legal interpretation to Todd Mitchell)

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail
3.2 Does the label conform in content to the label shown in Figure 11 at each front outboard seating position? (S4.5.1(b)(2)) (Vehicles without back seats or the back seat is too small to accommodate a rear-facing child restraint may omit the statement: “Never put a rear-facing child seat in the front.” (S4.5.1(b)(3)(v)))

![Figure 11: Sun Visor Label Visible when Visor is in Down Position.](image1)

3.3 Is the label heading area yellow with the word “WARNING” and the alert symbol in black? (S4.5.1(b)(3)(i))

![Figure 6b: Sun Visor Label Visible When Visor is in Down Position.](image2)

3.4 Is the message area white with black text? (S4.5.1(b)(3)(ii))
3.5 Is the message area at least 30 cm²? (S4.5.1(b)(3)(ii))

The message area consists of the total label area minus the yellow heading area and the pictogram. The pictogram is enclosed on the left side and bottom by the edge of the label. The top edge of the pictogram area is defined by a horizontal line midway between the uppermost edge of the pictogram and the lowermost edge of the text. The right side of the pictogram is defined by a vertical line midway between the rightmost edge of the pictogram and the left most edge of the text, including any bullets. (See 5/6/03 interpretation to Gerald Plante on behalf of Subaru)

Driver Side: Length 66 mm, Width 42 mm
Passenger Side: Length 66 mm, Width 42 mm
Driver actual message area 27.7 cm²
Passenger actual message area 27.7 cm²

X Driver Side, Yes – Pass
X Driver Side, No – Fail
X Passenger Side, Yes – Pass
X Passenger Side, No – Fail

3.6 Is the pictogram black on a white background? (S4.5.1(b)(3)(iii))

X Driver Side, Yes – Pass
X Driver Side, No – Fail
X Passenger Side, Yes – Pass
X Passenger Side, No – Fail

3.7 Is the pictogram at least 30 mm in length? (S4.5.1(b)(3)(iii))

Driver side: Length: 41 mm
Passenger side: Length: 41 mm

X Driver Side, Yes – Pass
X Driver Side, No – Fail
X Passenger Side, Yes – Pass
X Passenger Side, No – Fail

3.8 Is the same side of the sun visor that contains the air bag warning label free of other information with the exception of the air bag maintenance label and/or the rollover-warning label? (S4.5.1(b)(5)(i))

X Driver Side, Yes – Pass
X Driver Side, No – Fail
X Passenger Side, Yes – Pass
X Passenger Side, No – Fail

3.9 Is the sun visor free of other information about air bags or the need to wear seat belts with the exception of the air bag alert label and/or the rollover-warning label? (S4.5.1(b)(5)(ii))

X Driver Side, Yes – Pass
X Driver Side, No – Fail
X Passenger Side, Yes – Pass
X Passenger Side, No – Fail

3.10 Does the driver side visor contain a rollover-warning label on the same side of the visor as the air bag warning label?

___ Yes (go to 3.10.1)

X No (go to 4., skipping 3.10.1 through 3.10.3)

3.10.1 Are both the rollover-warning label and the air bag warning label surrounded by a continuous solid-lined border?

___ Yes (go to 3.10.2 and skip 3.10.3)
___ No (go to 3.10.3 and skip 3.10.2)
| 3.10.2 Is the shortest distance from the border of the rollover label to the border of the air bag warning label at least 1 cm? (575.105 (d)(1)(iv)(B)) |
|---|---|
| actual distance | Yes-Pass No-FAIL |

| 3.10.3 Is the shortest distance from any of the lettering or graphics on the rollover-warning label to any of the lettering or graphics of the air bag warning label at least 3 cm? (575.105 (d)(1)(iv)(A)) |
|---|---|
| actual distance | Yes-Pass No-FAIL |

| 4. Air Bag Alert Label (S4.5.1(c)) (A “Rollover Warning Label” or “Rollover Alert Label” may be on the same side of the driver’s sun visor as the “Air Bag Alert Label.” 575.105(d)) |
|---|---|
| If yes for driver and passenger, go to 5. |
| Driver Side, Yes |
| Driver Side, No |
| Passenger Side, Yes |
| Passenger Side, No |

| 4.1 Is the Sun Visor Warning Label visible when the sun visor is in the stowed position? |
|---|---|
| X Driver Side, Yes |
| X Driver Side, No |
| X Passenger Side, Yes |
| Passenger Side, No |

| 4.2 Is the air bag alert label permanently affixed (including permanent marking on the visor material or molding into the visor material) to the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing the label or the sun visor? (S4.5.1(c)) (3/19/01 legal interpretation to Todd Mitchell) |
|---|---|
| Driver Side, Yes – Pass |
| Driver Side, No – Fail |
| Passenger Side, Yes – Pass |
| Passenger Side, No – Fail |

| 4.3 Is the air bag alert label visible when the visor is in the stowed position? (S4.5.1(c)) |
|---|---|
| Driver Side, Yes – Pass |
| Driver Side, No – Fail |
| Passenger Side, Yes – Pass |
| Passenger Side, No – Fail |

| 4.4 Does the label conform in content to the label shown in Figure 6C? (S4.5.1(c)) |
|---|---|
| Driver Side, Yes – Pass |
| Driver Side, No – Fail |
| Passenger Side, Yes – Pass |
| Passenger Side, No – Fail |

| 4.5 Is the message area black with yellow text? (S4.5.1(c)(1)) |
|---|---|
| Driver Side, Yes – Pass |
| Driver Side, No – Fail |
| Passenger Side, Yes – Pass |
| Passenger Side, No – Fail |
4.6 Is the message area at least 20 cm²? (S4.5.1(c)(1)) The message area consists of the black part of the label.

Driver Side: Length ___________, Width ___________
Passenger Side: Length ___________, Width ___________
Actual message area _____________ cm²

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

4.7 Is the pictogram black with a red circle and slash on a white background? (S4.5.1(c)(2))

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

4.8 Is the pictogram at least 20 mm in diameter? (S4.5.1(c)(2))

Driver Side: Diameter ____________ mm
Passenger Side: Diameter ____________ mm

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

5. Label on the Dashboard: Vehicles certified to meet the requirements of S19, S21 and S23?

5.1 Does the vehicle have a label on the dash or steering wheel hub? (S4.5.1(e)(3))

- Yes – Pass
- No – Fail

5.2 Is the label clearly visible from all front seating positions? (S4.5.1(e)(3))

- Yes – Pass
- No - Fail

5.3 Does the label conform in content to the label shown in Figure 12? (S4.5.1(e)(3)(iii))

Vehicles without back seats may omit the statement: “The back seat is the safest place for children.” Vehicles without back seats or too small to accommodate a rear-facing child restraint consistent with S4.5.4.1 as determined in DATA SHEET 7 may omit the statement “Never put a rear-facing child seat in the front.” (S4.5.1(e)(3)(iii))

- Yes – Pass
- No - Fail

Figure 12. Removable Label on Dash.

This Vehicle is Equipped with Advanced Air Bags

Even with Advanced Air Bags
Children can be killed or seriously injured by the air bag.
The back seat is the safest place for children.
Never put a rear-facing child seat in the front.
Always use seat belts and child restraints.
See owner’s manual for more information about air bags.
5.4 Is the heading area yellow with black text? (S4.5.1(e)(3)(i))
- Yes – Pass
- No - Fail

5.5 Is the message white with black text? (S4.5.1(e)(3)(ii))
- Yes – Pass
- No - Fail

5.6 Is the message area at least 30 cm²? (S4.5.1(e)(3)(ii)) The message area consists of the total label area minus the yellow heading area. (See 5/6/03 interpretation to Gerald Plante on behalf of Subaru)
Length __105 mm__, Width ___32 mm__
Actual message area __33.6__ cm²
- Yes – Pass
- No - Fail

I certify that I have read and performed each instruction.

Signature: __________________________
Date: 3/12/09
An occupant restraint system that deploys in the event of a crash shall have a monitoring system with a readiness indicator. A totally mechanical system is exempt from this requirement. (11/8/94 legal interpretation to Lawrence F. Hennegerger on behalf of Breed)

1. Is the system totally mechanical? (If Yes, this Data Sheet is complete).
 - Yes
 - X No

2. Describe the location of the readiness indicator: **Upper Center**

3. Is the readiness indicator clearly visible to the driver?
 - X Yes – Pass
 - No - Fail

4. Is a list of the elements in the occupant restraint system, being monitored by the readiness indicator, provided on a label or in the owner’s manual?
 - X Yes – Pass
 - No - Fail

5. Does the vehicle have an on-off switch for the passenger air bag?
 - If Yes (go to 6)
 - X If No (this form is complete)

6. Is the air bag readiness indicator off when the passenger air bag switch is in the off position?
 - Yes – Pass
 - No - Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: __________________________

Date: 3/12/09
DATA SHEET 7

PASSENGER AIR BAG MANUAL CUT-OFF DEVICE (S4.5.4)

Test Vehicle: 2009 BMW 128i Coupe NHTSA No.: C90514
Test Program: FMVSS 208 Compliance Test Date: 3/12/09
Test Technician: Wayne Dahlke

X 1. Is the vehicle equipped with an on-off switch that deactivates the air bag installed at the right front outboard seating position?
 □ Yes, go to 2
 X No, this sheet is complete

2. Does the vehicle have any forward-facing rear designated seating positions? (S4.5.4.1(a))
 □ Yes, go to 3
 □ No, go to 4

3. Verification there is room for a child restraint in the rear seat behind the driver’s seat. (S4.5.4.1(b))
 □ N/A – the seat does not have fore-aft adjustment
 □ N/A – the seat does not have fore-aft adjustment
 □ N/A – No seat height adjustment
 □ N/A – No seat height adjustment
 □ N/A – No lumbar adjustment

3.1 Using all the controls that affect the fore-aft movement of the seat, move the seat to the rearmost position. Mark this position.

3.2 Using all the controls that affect the fore-aft movement of the seat, move the seat to the foremost position. Mark this position.

3.3 Move the seat to the middle of the foremost and rearmost positions. (S8.1.2)

3.4 If the driver’s seat height is adjustable, use all the controls that affect height to put it in the lowest position while maintaining the middle fore-aft position. (S8.1.2)

3.5 Position the driver’s seat adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)

3.6 The driver’s seat back angle, if adjustable, is set at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.5.4.1(b) and S8.1.3)

□ N/A – No seat back angle adjustment
□ Manufacturer’s design driver’s seat back angle ____________
□ Tested driver’s seat back angle ____________

3.7 Is the driver seat a bucket seat?
 □ Yes, go to 3.7.1 and skip 3.7.2.
 □ No, go to 3.7.2 and skip 3.7.1.

3.7.1 Bucket seats:
 □ Locate and mark a vertical Plane B through the longitudinal centerline of the driver’s seat cushion. The longitudinal centerline of a bucket seat cushion is determined at SgRP. (S16.3.1.10) (S4.5.4.1(b)(1))

 □ Locate the longitudinal horizontal line in plane B that is tangent to the highest point of the rear seat cushion behind the driver’s seat. Measure along this line from the front of the seat back of the rear seat to the rear of the seat back of the driver’s seat.
 □ mm distance ___less than 720 mm – Pass ___more than 720 mm – FAIL
 Go to 4

3.7.2 Bench seats (including split bench seats):
 □ Locate and mark a vertical Plane B through the center of the steering wheel parallel to the vehicle longitudinal centerline. (S4.5.4.1(b)(2))

 □ Locate the longitudinal horizontal line in plane B that is tangent to the highest point of the rear seat cushion. Measure along this line from the front of the seat back of the rear seat to the rear of the seat back of the front seat.
 □ mm distance ___less than 720 mm – Pass ___more than 720 mm - FAIL
 Go to 4

Test Vehicle: 2009 BMW 128i Coupe NHTSA No.: C90514
Test Program: FMVSS 208 Compliance Test Date: 3/12/09
Test Technician: Wayne Dahlke
4. Does the device turn the air bag on and off using the vehicle’s ignition key? (S4.5.4.2)
 - Yes – Pass
 - No – Fail

5. Is the on-off device separate from the ignition switch? (S4.5.4.2)
 - Yes – Pass
 - No – Fail

6. Is there a telltale light that comes on when the passenger air bag is turned off? (S4.5.4.2)
 - Yes – Pass
 - No – Fail

7. Telltale light (S4.5.4.3)
 7.1 Is the light yellow? (S4.5.4.3(a))
 - Yes – Pass
 - No – Fail
 7.2 Are the words “PASSENGER AIR BAG OFF” or “PASS AIR BAG OFF” (S4.5.4.3(b))
 on the telltale?
 - Yes – Pass, go to 7.3
 - No – go to 7.2.2
 7.2.2 within 25 mm of the telltale?
 - Yes – Pass
 - No – Fail

7.3 Does the telltale remain illuminated while the air bag is turned off? (S4.5.4.3c) (Leave the air bag off for 5 minutes.)
 - Yes – Pass
 - No – Fail

7.4 Is the telltale illuminated while the air bag is turned on? (S4.5.4.3(d))
 - Yes – Fail
 - No – Pass

7.5 Is the telltale combined with the air bag readiness indicator? (S4.5.4.3(e))
 - Yes – Fail
 - No – Pass

8. Owner’s Manual
 8.1 Does the owner’s manual contain complete instructions on the operation of the on-off switch? (S4.5.4.4(a))
 - Yes – Pass
 - No – Fail
 8.2 Does the owner’s manual contain a statement that the on-off switch should only be used when a member of one of the following risk groups is occupying the right front passenger seating position? (S4.5.4.4(b))
 - Yes – Pass
 - No – Fail

 Infants:
 - there is no back seat
 - the rear seat is too small to accommodate a child restraint
 - there is a medical condition that must be monitored constantly

 Children aged 1 to 12:
 - there is no back seat
 - space is not always available in the rear seat
 - there is a medical condition that must be monitored constantly

 Medical condition:
 - medical risk causes special risk for passenger
 - greater risk for harm than with the air bag on
 8.3 Does the owner’s manual contain a warning about the safety consequences of using the on-off switch at other times?
 - Yes – Pass
 - No – Fail

REMARKS:

Signature: __________________________ Date: 3/12/09
I certify that I have read and performed each instruction.
DATA SHEET 8
LAP BELT LOCKABILITY

Passenger cars, trucks, buses, and multipurpose passenger
Vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2009 BMW 128i Coupe</th>
<th>NHTSA No.:</th>
<th>C90514</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program:</td>
<td>FMVSS 208 Compliance</td>
<td>Test Date:</td>
<td>3/12/09</td>
</tr>
<tr>
<td>Test Technician:</td>
<td>Wayne Dahlke</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver’s seat (S7.1.1.5(a), and that has seat belt retractors that are not solely automatic locking retractors. (S7.1.1.5(c))

<table>
<thead>
<tr>
<th>DESIGNATED SEATING POSITION:</th>
<th>Front Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A – No retractor is at this position</td>
<td></td>
</tr>
<tr>
<td>N/A – The retractor is an automatic locking retractor ONLY</td>
<td></td>
</tr>
<tr>
<td>1. Record test fore-aft seat position: REAR (S7.1.1.5(c)(1)) (Any position is acceptable)</td>
<td></td>
</tr>
<tr>
<td>2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5(a))</td>
<td></td>
</tr>
<tr>
<td>Yes – Pass</td>
<td>Yes – Pass</td>
</tr>
<tr>
<td>No – Fail</td>
<td>No – Fail</td>
</tr>
<tr>
<td>3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.5(a))</td>
<td></td>
</tr>
<tr>
<td>Yes – Pass</td>
<td>Yes – Pass</td>
</tr>
<tr>
<td>No – Fail</td>
<td>No – Fail</td>
</tr>
<tr>
<td>4. Place any adjustable seat belt anchorage in the lowest adjustment position.</td>
<td></td>
</tr>
<tr>
<td>N/A The anchorage is not adjustable.</td>
<td>N/A The anchorage is not adjustable.</td>
</tr>
<tr>
<td>5. Buckle the seat belt. (S7.1.1.5(c)(1))</td>
<td></td>
</tr>
<tr>
<td>6. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))</td>
<td></td>
</tr>
<tr>
<td>7. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))</td>
<td></td>
</tr>
<tr>
<td>8. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?</td>
<td></td>
</tr>
<tr>
<td>Yes (go to 8.1)</td>
<td>Yes (go to 8.1)</td>
</tr>
<tr>
<td>No (go to 9)</td>
<td>No (go to 9)</td>
</tr>
<tr>
<td>8.1 Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))</td>
<td></td>
</tr>
<tr>
<td>Yes – Pass</td>
<td>Yes – Pass</td>
</tr>
<tr>
<td>No – Fail</td>
<td>No – Fail</td>
</tr>
<tr>
<td>9. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2) & S7.1.1.5(c)(1))</td>
<td></td>
</tr>
<tr>
<td>10. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))</td>
<td></td>
</tr>
<tr>
<td>Measured distance between A and B (inches): 81 ¾</td>
<td>Measured distance between A and B (inches): 81 ¾</td>
</tr>
</tbody>
</table>
11. Readjust the belt system so that the webbing between points A and B is at ½ the maximum length of the webbing. (S7.1.1.5(c)(3))

12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

15. Let the seat belt webbing retract to its minimum length with the seat belt still buckled.

16. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

17. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

18. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

19. Subtract the measurement in 13 from the measurement in 14 and the measurement in 17 from the measurement in 18. Is the difference 2 inches or less for both? (S7.1.1.5(c)(7))

Yes – Pass
No – Fail
20. Subtract the measurement in 14 from the measurement in 10 and the measurement in 18 from the measurement in 10. Is the difference 3 inches or more for both? (S7.1.1.5(c)(8))

10-14 = 81 ¾ - 43 ½ = 38 ¼ inches;
10-18 = 81 ¾ - 23 = 58 ¾ inches

Yes – Pass
No – Fail

REMARKS:

Signature: Wayne Zabila Date: 3/12/09

I certify that I have read and performed each instruction.

Figure 5. - Webbing Tension Pull Device
DATA SHEET 8
LAP BELT LOCKABILITY
Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Test Vehicle: 2009 BMW 128i Coupe
Test Program: FMVSS 208 Compliance
Test Technician: Jaime Aide
NHTSA No.: C90514
Test Date: 3/12/09

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver’s seat (S7.1.1.5(a), and that has seat belt retractors that are not solely automatic locking retractors. (S7.1.1.5(c))

<table>
<thead>
<tr>
<th>DESIGNATED SEATING POSITION: Left Rear Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A – No retractor is at this position</td>
</tr>
<tr>
<td>N/A – The retractor is an automatic locking retractor ONLY</td>
</tr>
<tr>
<td>1. Record test fore-aft seat position: FIXED (S7.1.1.5(c)(1)) (Any position is acceptable)</td>
</tr>
<tr>
<td>2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5 (a))</td>
</tr>
<tr>
<td>Yes – Pass</td>
</tr>
<tr>
<td>No – Fail</td>
</tr>
<tr>
<td>3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.5 (a))</td>
</tr>
<tr>
<td>Yes – Pass</td>
</tr>
<tr>
<td>No – Fail</td>
</tr>
<tr>
<td>4. Place any adjustable seat belt anchorage in the lowest adjustment position.</td>
</tr>
<tr>
<td>N/A The anchorage is not adjustable.</td>
</tr>
<tr>
<td>5. Buckle the seat belt. (S7.1.1.5(c)(1))</td>
</tr>
<tr>
<td>6. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))</td>
</tr>
<tr>
<td>7. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))</td>
</tr>
<tr>
<td>8. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?</td>
</tr>
<tr>
<td>Yes (go to 8.1)</td>
</tr>
<tr>
<td>No (go to 9)</td>
</tr>
<tr>
<td>8.1 Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))</td>
</tr>
<tr>
<td>Yes – Pass</td>
</tr>
<tr>
<td>No – Fail</td>
</tr>
<tr>
<td>9. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2) & S7.1.1.5(c)(1))</td>
</tr>
<tr>
<td>10. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))</td>
</tr>
<tr>
<td>Measured distance between A and B (inches): 62 ¾</td>
</tr>
</tbody>
</table>
11. Readjust the belt system so that the webbing between points A and B is at ½ the maximum length of the webbing. (S7.1.1.5(c)(3))

12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

15. Let the seat belt webbing retract to its minimum length with the seat belt still buckled.

16. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

17. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

18. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

19. Subtract the measurement in 13 from the measurement in 14 and the measurement in 17 from the measurement in 18. Is the difference 2 inches or less for both? (S7.1.1.5(c)(7))

20. Subtract the measurement in 14 from the measurement in 10 and the measurement in 18 from the measurement in 10. Is the difference 3 inches or more for both? (S7.1.1.5(c)(8))

REMARKS:

Signature: __________________________ Date: 3/12/09

I certify that I have read and performed each instruction.
DATA SHEET 8
LAP BELT LOCKABILITY
Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2009 BMW 128i Coupe</th>
<th>NHTSA No.:</th>
<th>C90514</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program:</td>
<td>FMVSS 208 Compliance</td>
<td>Test Date:</td>
<td>3/12/09</td>
</tr>
<tr>
<td>Test Technician:</td>
<td>Wayne Dahlke</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver’s seat (S7.1.1.5(a), and that has seat belt retractors that are not solely automatic locking retractors. (S7.1.1.5(c))

<table>
<thead>
<tr>
<th>DESIGNATED SEATING POSITION:</th>
<th>Right Rear Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>N/A – No retractor is at this position</td>
</tr>
<tr>
<td>2.</td>
<td>N/A – The retractor is an automatic locking retractor ONLY</td>
</tr>
<tr>
<td>3.</td>
<td>Record test fore-aft seat position: FIXED</td>
</tr>
<tr>
<td>4.</td>
<td>(S7.1.1.5(c)(1)) (Any position is acceptable)</td>
</tr>
<tr>
<td>5.</td>
<td>Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5 (a))</td>
</tr>
<tr>
<td>6.</td>
<td>Yes – Pass</td>
</tr>
<tr>
<td>7.</td>
<td>No – Fail</td>
</tr>
<tr>
<td>8.</td>
<td>Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.5 (a))</td>
</tr>
<tr>
<td>9.</td>
<td>Yes – Pass</td>
</tr>
<tr>
<td>10.</td>
<td>No – Fail</td>
</tr>
<tr>
<td>11.</td>
<td>4. Place any adjustable seat belt anchorage in the lowest adjustment position.</td>
</tr>
<tr>
<td>12.</td>
<td>N/A The anchorage is not adjustable.</td>
</tr>
<tr>
<td>13.</td>
<td>5. Buckle the seat belt. (S7.1.1.5(c)(1))</td>
</tr>
<tr>
<td>14.</td>
<td>6. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))</td>
</tr>
<tr>
<td>15.</td>
<td>7. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))</td>
</tr>
<tr>
<td>16.</td>
<td>8. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?</td>
</tr>
<tr>
<td>17.</td>
<td>Yes (go to 8.1)</td>
</tr>
<tr>
<td>18.</td>
<td>No (go to 9)</td>
</tr>
<tr>
<td>19.</td>
<td>8.1 Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))</td>
</tr>
<tr>
<td>20.</td>
<td>Yes – Pass</td>
</tr>
<tr>
<td>21.</td>
<td>No – Fail</td>
</tr>
<tr>
<td>22.</td>
<td>9. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2) & S7.1.1.5(c)(1))</td>
</tr>
<tr>
<td>23.</td>
<td>10. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))</td>
</tr>
<tr>
<td>24.</td>
<td>Measured distance between A and B (inches): 62 ¾</td>
</tr>
</tbody>
</table>
11. Readjust the belt system so that the webbing between points A and B is at ½ the maximum length of the webbing. (S7.1.1.5(c)(3))

12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

15. Let the seat belt webbing retract to its minimum length with the seat belt still buckled

16. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

17. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

18. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

19. Subtract the measurement in 13 from the measurement in 14 and the measurement in 17 from the measurement in 18. Is the difference 2 inches or less for both? (S7.1.1.5(c)(7))

20. Subtract the measurement in 14 from the measurement in 10 and the measurement in 18 from the measurement in 10. Is the difference 3 inches or more for both? (S7.1.1.5(c)(8))

REMARKS:

Signature: __________________________ Date: 3/12/09

I certify that I have read and performed each instruction.
DATA SHEET 9
FMVSS 208 SEAT BELT WARNING SYSTEM CHECK (S7.3)

Test Vehicle: 2009 BMW 128i Coupe NHTSA No.: C90514
Test Program: FMVSS 208 Compliance Test Date: 3/12/09
Test Technician: Wayne Dahlke

1. The occupant is in the driver’s seat.
2. The seat belt is in the stowed position.
3. The key is in the “on” or “start” position.
4. The time duration of the audible signal beginning with key “on” or “start” is
 5 seconds.
5. The occupant is in the driver’s seat.
6. The seat belt is in the stowed position.
7. The key is in the “on” or “start” position.
8. The time duration of the warning light beginning with key “on” or “start” is
 Stays On seconds.
9. The occupant is in the driver’s seat.
10. The seat belt is in the latched position and with at least 4 inches of belt webbing extended.
11. The key is in the “on” or “start” position.
12. The time duration of the warning light beginning with key “on” or “start” is
 0 seconds.
13. Complete the following table with the data from 4, 8, and 12 to determine which option is used.

<table>
<thead>
<tr>
<th>Warning light specification</th>
<th>Audible signal</th>
<th>Audible signal specification*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item 8: Stays On</td>
<td>Item 4: 5</td>
<td>4 to 8 seconds</td>
</tr>
</tbody>
</table>

* 49 USCS @ 30124 does NOT allow an audible signal to operate for more than 8 seconds.
A voluntary audible signal after the 4 to 8 second required signal may be provided. It must be differentiated from the required signal (5/25/2001 legal interpretation to Longacre and Associates).

14. The seat belt warning system meets the requirements of (manufacturers may comply with either section).
 - S7.3 (a)(1)
 - S7.3 (a)(2)
 - FAIL – Does NOT meet the requirements of either option.

15. Note wording of visual warning: (S7.3(a)(1) and S7.3(a)(2))
 - Fasten Seat Belts
 - Fasten Belts
 - Symbol 101 - or
 - FAIL – Does not use any of the above wording or symbol.

I certify that I have read and performed each instruction.

Signature: Wayne Dahlke Date: 3/12/09
DATA SHEET 10

BELT CONTACT FORCE (S7.4.3)

Test Vehicle: 2009 BMW 128i Coupe
NHTSA No.: C90514
Test Program: FMVSS 208 Compliance
Test Date: 3/12/09
Test Technician: Wayne Dahlke

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Left Rear Passenger

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Does the vehicle incorporate a webbing tension-relieving device?</td>
</tr>
<tr>
<td>X</td>
<td>Yes (this form is complete)</td>
</tr>
<tr>
<td>X</td>
<td>No (continue with this check sheet)</td>
</tr>
<tr>
<td>2.</td>
<td>Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)</td>
</tr>
<tr>
<td>X</td>
<td>N/A – No lumbar adjustment</td>
</tr>
<tr>
<td>3.</td>
<td>Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)</td>
</tr>
<tr>
<td>X</td>
<td>N/A – No additional support adjustment</td>
</tr>
<tr>
<td>4.</td>
<td>Is the fore-aft position of the seat adjustable?</td>
</tr>
<tr>
<td>X</td>
<td>No – go to 5</td>
</tr>
<tr>
<td></td>
<td>Yes – go to 4.1</td>
</tr>
<tr>
<td>4.1</td>
<td>Use all the seat controls that have any affect on the fore-aft movement of the seat to move the seat cushion to the rearmost position. Mark this position. (8/31/95 legal interp to Hogan and Hartson)</td>
</tr>
<tr>
<td>4.2</td>
<td>Use all the seat controls that have any affects on the fore-aft movement of the seat to move the seat cushion to the foremost position. Mark this position. (8/31/95 legal interp to Hogan and Hartson)</td>
</tr>
<tr>
<td>4.3</td>
<td>Mark each fore-aft position so that there is a visual indication when the seat is at a particular position. For manual seats, mark each detent. For power seats, mark only the rearmost, middle and foremost positions. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the closest adjustment position to the rear of the mid-point), and R for rearmost. Determine the mid fore-aft seat position based on the foremost and rearmost positions determined in items 4.1 and 4.2. (8/31/95 legal interp to Hogan and Hartson)</td>
</tr>
<tr>
<td>4.4</td>
<td>Move the seat to the mid position.</td>
</tr>
<tr>
<td>4.5</td>
<td>While maintaining the mid position, move the seat to its lowest position. For seats with adjustable seat cushions, use the manufacturer’s recommended seat cushion angle for determining the lowest height position.</td>
</tr>
<tr>
<td>X</td>
<td>Is the seat back angle adjustable?</td>
</tr>
<tr>
<td>X</td>
<td>No- go to 6</td>
</tr>
<tr>
<td></td>
<td>Yes- go to 5.1</td>
</tr>
<tr>
<td>5.1</td>
<td>Set and mark seat back angle, if adjustable, at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer.</td>
</tr>
<tr>
<td>X</td>
<td>N/A – No seat back angle adjustment</td>
</tr>
<tr>
<td></td>
<td>Manufacturer’s design seat back angle: ____________</td>
</tr>
<tr>
<td></td>
<td>Tested seat back angle: ____________</td>
</tr>
</tbody>
</table>
6. Is the seat a bucket seat?
 □ Yes, go to 6.1 and skip 6.2
 □ No, go to 6.2 and skip 6.1

6.1 Bucket seats:
 Locate and mark the longitudinal centerline of the seat cushion. The intersection of
 the vertical longitudinal plane that passes through the SgRP and the seat cushion
 upper surface determines the longitudinal centerline of a bucket seat cushion.
 (S10.4.1.2 and S16.3.1.10)

6.2 Bench seats (complete ONLY the one that is applicable to the seat being tested):
 6.2.1 Driver Seat
 Locate and mark the longitudinal line on the seat cushion that marks the intersection
 of the vertical longitudinal plane through the centerline of the steering wheel and the
 seat cushion upper surface. (S10.4.1.1)

 6.2.2 Front Outboard Passenger Seat
 Locate and mark the longitudinal centerline of the passenger seat cushion. The
 longitudinal centerline is the same distance from the longitudinal centerline of the vehicle
 as the center of the steering wheel. (S10.4.1.1)

 □ Record the distance from the longitudinal centerline of the vehicle to the center of the
 steering wheel. __________
 □ Record the distance from the longitudinal centerline of the vehicle to the longitudinal
 centerline of the seat cushion. __________

6.2.3 Rear designated seating positions
 Locate and mark the longitudinal centerline of the seat cushion. The intersection of
 the vertical longitudinal plane that passes through the SgRP and the seat cushion upper
 surface determines the longitudinal centerline.

7. Position the test dummies according to dummy position placement instructions in
 Appendix F. Complete the Appendix F check sheets, but include them in the test
 report ONLY if there is a test failure.

8. Fasten the seat belt latch.

9. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing,
 whichever is less, from the retractor and then release it, allowing the belt webbing to
 return to the dummy's chest.

10. Locate the point where the centerline of the upper torso belt webbing crosses the
 midsagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches
 from the dummy's chest and release until it is within one inch from the dummy's chest.
 (S10.8) Using a force measuring gage with a full scale range of no more than 1.5
 pounds, measure the contact force perpendicular to the dummy's chest exerted by the
 belt webbing.

 □ Contact Force (lb): 0.5
 □ 0.0 to 0.7 pounds – Pass
 □ Greater than 0.7 pounds - FAIL

REMARKS:

Signature: _________________________________ Date: 3/12/09

I certify that I have read and performed each instruction.
DATA SHEET 10
BELT CONTACT FORCE (S7.4.3)

Test Vehicle: 2009 BMW 128i Coupe
Test Program: FMVSS 208 Compliance
Test Technician: Wayne Dahlke
NHTSA No.: C90514
Test Date: 3/12/09

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

<table>
<thead>
<tr>
<th>DESIGNATED SEATING POSITION:</th>
<th>Right Rear Passenger</th>
</tr>
</thead>
</table>

1. **Does the vehicle incorporate a webbing tension-relieving device?**
 - [X] Yes (this form is complete)
 - [] No (continue with this check sheet)

2. **Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position.** (S8.1.3)
 - [X] N/A – No lumbar adjustment

3. **Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position.** (S16.2.10.2)
 - [X] N/A – No additional support adjustment

4. **Is the fore-aft position of the seat adjustable?**
 - [X] No – go to 5
 - [] Yes – go to 4.1

4.1 **Use all the seat controls that have any affect on the fore-aft movement of the seat to move the seat cushion to the rearmost position. Mark this position.** (8/31/95 legal interp to Hogan and Hartson)

4.2 **Use all the seat controls that have any affects on the fore-aft movement of the seat to move the seat cushion to the foremost position. Mark this position.** (8/31/95 legal interp to Hogan and Hartson)

4.3 **Mark each fore-aft position so that there is a visual indication when the seat is at a particular position. For manual seats, mark each detent. For power seats, mark only the rearmost, middle and foremost positions. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the closest adjustment position to the rear of the mid-point), and R for rearmost. Determine the mid fore-aft seat position based on the foremost and rearmost positions determined in items 4.1 and 4.2.** (8/31/95 legal interp to Hogan and Hartson)

4.4 **Move the seat to the mid position.**

4.5 **While maintaining the mid position, move the seat to its lowest position. For seats with adjustable seat cushions, use the manufacturer's recommended seat cushion angle for determining the lowest height position.**

5. **Is the seat back angle adjustable?**
 - [X] No- go to 6
 - [] Yes- go to 5.1

5.1 **Set and mark seat back angle, if adjustable, at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer.**
 - [X] N/A – No seat back angle adjustment
 - [] Manufacturer's design seat back angle: ____________
 - [] Tested seat back angle: ____________
6. Is the seat a bucket seat?

☐ Yes, go to 6.1 and skip 6.2

☒ No, go to 6.2 and skip 6.1

6.1 Bucket seats:

Locate and mark the longitudinal centerline of the seat cushion. The intersection of the vertical longitudinal plane that passes through the SgRP and the seat cushion upper surface determines the longitudinal centerline of a bucket seat cushion. (S10.4.1.2 and S16.3.1.10)

6.2 Bench seats (complete ONLY the one that is applicable to the seat being tested):

6.2.1 Driver Seat

Locate and mark the longitudinal line on the seat cushion that marks the intersection of the vertical longitudinal plane through the centerline of the steering wheel and the seat cushion upper surface. (S10.4.1.1)

6.2.2 Front Outboard Passenger Seat

Locate and mark the longitudinal centerline of the passenger seat cushion. The longitudinal centerline is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel. (S10.4.1.1)

☐ Record the distance from the longitudinal centerline of the vehicle to the center of the steering wheel. _________

☐ Record the distance from the longitudinal centerline of the vehicle to the longitudinal centerline of the seat cushion. ________

6.2.3 Rear designated seating positions

Locate and mark the longitudinal centerline of the seat cushion. The intersection of the vertical longitudinal plane that passes through the SgRP and the seat cushion upper surface determines the longitudinal centerline.

7. Position the test dummies according to dummy position placement instructions in Appendix F. Complete the Appendix F check sheets, but include them in the test report ONLY if there is a test failure.

8. Fasten the seat belt latch.

9. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest.

10. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (S10.8) Using a force measuring gage with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy's chest exerted by the belt webbing.

Contact Force (lb): 0.5

☐ 0.0 to 0.7 pounds – Pass

☒ Greater than 0.7 pounds - FAIL

REMARKS:

Signature: _________________________________ Date: 3/12/09

I certify that I have read and performed each instruction.
Test all front outboard seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Not Applicable For Any Position - Passenger Car

1. Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 - N/A – No lumbar adjustment
2. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - N/A – No additional support adjustment
3. Is the fore-aft position of the seat adjustable?
 - No – go to 4
 - Yes – go to 3.1
 3.1 Use all the seat controls that have any affect on the fore-aft movement of the seat to move the seat cushion to the rearmost position. Mark this position. (8/31/95 legal interp to Hogan and Hartson)
4. Is the seat back angle adjustable?
 - No- go to 5
 - Yes- go to 4.1
 4.1 Set and mark seat back angle, if adjustable, at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer.
 - N/A – No seat back angle adjustment
 - Manufacturer’s design seat back angle: ____________
 - Tested seat back angle: ____________
5. Is the seat a bucket seat?
 - Yes, go to 5.1 and skip 5.2
 - No, go to 5.2 and skip 5.1
5.1 Bucket seats:
 - Locate and mark the longitudinal centerline of the seat cushion. The intersection of the vertical longitudinal plane that passes through the SgRP and the seat cushion upper surface determines the longitudinal centerline of a bucket seat cushion. (S10.4.1.2 and S16.3.1.10)
5.2 Bench seats (complete ONLY the one that is applicable to the seat being tested):
 5.2.1 Driver Seat
 - Locate and mark the longitudinal line on the seat cushion that marks the intersection of the vertical longitudinal plane through the centerline of the steering wheel and the seat cushion upper surface. (S10.4.1.1)
5.2.2 Front Outboard Passenger Seat

Locate and mark the longitudinal centerline of the passenger seat cushion. The longitudinal centerline is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel. (S10.4.1.1)

Record the distance from the longitudinal centerline of the vehicle to the center of the steering wheel.

Record the distance from the longitudinal centerline of the vehicle to the longitudinal centerline of the seat cushion.

6. Position the test dummy using the procedures in Appendix F. (Some modifications to the positioning procedure may need to be made because the seat is in the forward most position. Note on the Appendix F positioning check sheet any deviations necessary to position the Part 572, Subpart E dummy). Complete the Appendix F check sheets, but include them in the test report ONLY if there is a test failure.

7. Position the adjustable seat belt anchorage in the manufacturer’s nominal design position for a 50th percentile adult male occupant.

8. Attach the inboard reach string to the base of the head following the instructions on Figure 3.

9. Attach the outboard reach string to the torso sheath following the instructions on Figure 3.

10. Place the latch plate in the stowed position.

11. Extend the inboard reach string in front of the dummy and then backward and outboard to the latch plate to generate arcs of the reach envelope of the test dummy's arms. Is the latch plate within the reach envelope?

 Yes – Pass
 No

12. Extend the outboard reach string in front of the dummy and then backward and outboard to the latch plate to generate arcs of the reach envelope of the test dummy's arms. Is the latch plate within the reach envelope?

 Yes – Pass
 No

13. Is the latch plate within the inboard (item 11) or outboard (item 12) reach envelope?

 Yes – Pass
 No – Fail

14. Using the clearance test block, specified in Figure 4, is there sufficient clearance between the vehicle seat and the side of vehicle interior to allow the test block to move unhindered to the latch plate or buckle?

 Yes – Pass
 No – Fail

REMARKS:

Signature: _________________________________ Date: 3/12/09

I certify that I have read and performed each instruction.
Figure 3. Location of Anchoring Points for Latchplate Reach Limiting Chains or Strings to Test for Latchplate Accessibility Using Subpart B Test Device

Figure 4—USE OF CLEARANCE TEST BLOCK TO DETERMINE HAND/ARM ACCESS
DATA SHEET 12
SEAT BELT RETRACTION (S7.4.5)

Test Vehicle: 2009 BMW 128i Coupe
NHTSA No.: C90514
Test Program: FMVSS 208 Compliance
Test Date: 3/12/09
Test Technician: Wayne Dahlke

Test all front outboard seat belts, except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Not Applicable For Any Position – Passenger Car

1. Is the vehicle a passenger car or walk-in van-type vehicle?
 X Yes, this form is complete
 No

2. Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 N/A – No lumbar adjustment

3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 N/A – No additional support adjustment

4. Is the fore-aft position of the seat adjustable?
 No – go to 5
 Yes – go to 4.1

4.1 Use all the seat controls that have any affect on the fore-aft movement of the seat to move the seat cushion to the rearmost position. Mark this position. (8/31/95 legal interp to Hogan and Hartson)

4.2 Use all the seat controls that have any affects on the fore-aft movement of the seat to move the seat cushion to the foremost position. Mark this position. (8/31/95 legal interp to Hogan and Hartson)

4.3 Mark each fore-aft position so that there is a visual indication when the seat is at a particular position. For manual seats, mark each detent. For power seats, mark only the rearmost, middle and foremost positions. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the closest adjustment position to the rear of the mid-point), and R for rearmost. Determine the mid fore-aft seat position based on the foremost and rearmost positions determined in items 4.1 and 4.2. (8/31/95 legal interp to Hogan and Hartson)

4.4 Move the seat to the mid position.

4.5 While maintaining the mid position, move the seat to its lowest position. For seats with adjustable seat cushions, use the manufacturer’s recommended seat cushion angle for determining the lowest height position.

5. Is the seat back angle adjustable?
 No- go to 6
 Yes- go to 5.1

5.1 Set and mark seat back angle, if adjustable, at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer.
 N/A – No seat back angle adjustment
 Manufacturer’s design seat back angle: ____________
 Tested seat back angle: ____________

6. Is the seat a bucket seat?
 Yes, go to 6.1 and skip 6.2
 No, go to 6.2 and skip 6.1

6.1 Bucket Seats:
Locate and mark the longitudinal centerline of the seat cushion. The intersection of the vertical longitudinal plane that passes through the SgRP and the seat cushion upper surface determines the longitudinal centerline of a bucket seat cushion. (S10.4.1.2 and S16.3.1.10)
6.2 Bench seats (complete ONLY the one that is applicable to the seat being tested):

6.2.1 Driver Seat
Locate and mark the longitudinal line on the seat cushion that marks the intersection of the vertical longitudinal plane through the centerline of the steering wheel and the seat cushion upper surface. (S10.4.1.1)

6.2.2 Front Outboard Passenger Seat
Locate and mark the longitudinal centerline of the passenger seat cushion. The longitudinal centerline is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel. (S10.4.1.1)

Record the distance from the longitudinal centerline of the vehicle to the center of the steering wheel.

Record the distance from the longitudinal centerline of the vehicle to the longitudinal centerline of the seat cushion.

7. Position the Part 572 Subpart E test dummy according to dummy position placement instructions in Appendix F. Complete the Appendix F check sheets, but include them in the test report ONLY if there is a test failure.

8. Fasten the seat belt around the dummy.

9. Remove all slack from the lap belt portion. (S10.9)

10. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this four times. (S10.9)

11. Apply a 2 to 4 pound tension load to the lap belt. (S10.9)

12. Is the belt system equipped with a tension relieving device?

13. Introduce the maximum amount of slack into the upper torso belt that is recommended by the vehicle manufacturer in the vehicle owner's manual. (S10.9).

14. Check the statement that applies to this test vehicle:

14.1 The torso and lap belt webbing of the seat belt system automatically retracts to a stowed position when the adjacent vehicle door is in an open position and the seat belt latch plate is released.

14.2 The torso and lap belt webbing of the seat belt system automatically retracts when the seat belt latch plate is released.

14.3 Neither 14.1 nor 14.2 apply.

15. With the webbing and hardware in the stowed position are the webbing and hardware prevented from being pinched when the door is closed?

16. If this test vehicle has an open body (without doors) and has a belt system with a tension relieving device, does the belt system fully retract when the tension-relieving device is deactivated?

REMARKS:

Signature: __________________________ Date: 3/12/09

I certify that I have read and performed each instruction.
DATA SHEET 13
SEAT BELT GUIDES AND HARDWARE (S7.4.6)

Test Vehicle: 2009 BMW 128i Coupe NHTSA No.: C90514
Test Program: FMVSS 208 Compliance Test Date: 3/12/09
Test Technician: Wayne Dahlke

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Left Rear Passenger

1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1 (b))
 - X Yes, this form is complete
 - No, go to 2

2. Is the seat removable? (S7.4.6.1(b))
 - X Yes, this form is complete
 - No, go to 3

3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
 - X Yes, this form is complete
 - No, go to 4

4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
 - X Yes, go to 5
 - No, this form is complete

5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
 - X Yes – Pass
 - No – Fail
 - Identify the part(s) on top or above the seat.
 - Seat belt latch plate
 - X Buckle
 - X Seat belt webbing

6. Are the remaining two seat belt parts accessible under normal conditions?
 - X Yes – Pass
 - No – Fail

7. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (S7.4.6.2)
 - X Yes – Pass
 - No – Fail

8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
 - X Yes – Pass
 - No – Fail

9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)
 - X Yes – Pass
 - No – Fail

10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
 - X Yes – Pass
 - No – Fail
 - X N/A – Rear seat

REMARKS:

Signature: _______________________________ Date: 3/12/09

I certify that I have read and performed each instruction.
DATA SHEET 13
SEAT BELT GUIDES AND HARDWARE (S7.4.6)

Test Vehicle: 2009 BMW 128i Coupe
Test Program: FMVSS 208 Compliance
Test Technician: Wayne Dahlke
NHTSA No.: C90514
Test Date: 3/12/09

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

<table>
<thead>
<tr>
<th>Designated Seating Position:</th>
<th>Right Rear Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1 (b))</td>
<td>Yes, this form is complete No, go to 2</td>
</tr>
<tr>
<td>2. Is the seat removable? (S7.4.6.1(b))</td>
<td>Yes, this form is complete No, go to 3</td>
</tr>
<tr>
<td>3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))</td>
<td>Yes, this form is complete No, go to 4</td>
</tr>
<tr>
<td>4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))</td>
<td>Yes, go to 5 No, this form is complete</td>
</tr>
<tr>
<td>5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))</td>
<td>Yes – Pass No – Fail</td>
</tr>
<tr>
<td>Identify the part(s) on top or above the seat.</td>
<td>Seat belt latch plate Buckle Seat belt webbing</td>
</tr>
<tr>
<td>6. Are the remaining two seat belt parts accessible under normal conditions?</td>
<td>Yes – Pass No – Fail</td>
</tr>
<tr>
<td>7. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (S7.4.6.2)</td>
<td>Yes – Pass No – Fail</td>
</tr>
<tr>
<td>8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)</td>
<td>Yes – Pass No – Fail</td>
</tr>
<tr>
<td>9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)</td>
<td>Yes – Pass No – Fail</td>
</tr>
<tr>
<td>10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)</td>
<td>Yes – Pass No – Fail N/A – Rear seat</td>
</tr>
</tbody>
</table>

REMARKS:

Signature: _______________________________ Date: 3/12/09

I certify that I have read and performed each instruction.
DATA SHEET 16
AIR BAG SUPPRESSION TELTALTE (S19.2.2)

1. Is the vehicle certified to any suppression performance standards of FMVSS 208?
 X Yes - go to 2
 _No - this form is complete

2. Does telltale emit yellow light when the air bag is suppressed? (S19.2.2(a))
 X Yes - Pass __NO - FAIL

3. Are the words “PASSENGER AIR BAG OFF” or “PASS AIR BAG OFF” (S19.2.2(b))
 on the telltale? (S19.2.2(b))
 X Yes - Pass, go to 4
 _No - go to 3.2
 _3.2 Within 25 mm of the telltale? (S19.2.2(b)) ___mm from the edge of the telltale light
 X Yes - Pass __NO - FAIL

4. Is the telltale separate from the air bag readiness indicator? (S19.2.2(c))
 X Yes - Pass __NO - FAIL

5. Is the telltale within the interior of the vehicle? (S19.2.2(d))
 X Yes - Pass __NO - FAIL

6. Is the telltale forward of and above the design H-point of both the driver’s and the front
 outboard passenger’s seat when the seats are in their forwardmost seating positions? (S19.2.2(d))
 X Yes - Pass __NO - FAIL

7. Is the telltale away from surfaces that can be used for temporary or permanent storage
 of objects that could obscure the telltale from either the driver’s or front outboard
 passenger’s view? (S19.2.2(d))
 X Yes - Pass __NO - FAIL

8. Is the telltale located so that it is not obscured from the driver or front outboard
 passenger by a rear-facing child restraint in Appendix A installed in the front outboard
 passenger seat? (S19.2.2(d))
 X Yes - Pass __NO - FAIL

9. Is the telltale visible or recognizable during the night? (S19.2.2(e))
 X Yes - Pass __NO - FAIL

10. Is the telltale visible or recognizable during the day? (S19.2.2(e))
 X Yes - Pass __NO - FAIL

11. If there is a visibility adjustment, do all the adjustment levels make the telltale visible and
 recognizable? (S19.2.2(g))
 X N/A-No visibility adjustment
 _Yes - Pass __NO - FAIL

12. Does the telltale remain illuminated while the air bag is suppressed? (S19.2.2(h)) (Leave
 the air bag suppressed for 5 minutes.)
 X Yes - Pass __NO - FAIL

13. Is the telltale off while the air bag is activated? (S19.2.2(h)) (Leave the air bag activated
 for 5 minutes.)
 X Yes - Pass __NO - FAIL

I certify that I have read and performed each instruction. Date

Test Vehicle: 2009 BMW 128i Coupe NHTSA No.: C90514
Test Program: FMVSS 208 Compliance Test Date: 3/23/09
Test Technician: Wayne Dahlke
DATA SHEET 17 SUMMARY
Suppression Test Using 12-Month-Old CRABI Dummy (Part 572, Subpart R)
Section B Rear Facing CRS

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90514</th>
<th>TEST DATE:</th>
<th>3/23/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>WD</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RESTRAINT NAME:</th>
<th>Britax</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILD RESTRAINT MODEL:</td>
<td>Handle With Care 191</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>5-26-2000</td>
</tr>
</tbody>
</table>

Base: ___On ___Off ___X N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 25° torso angle with H-point machine
Tested seat back angle: 25° torso angle with H-point machine
Manufacturer's specified anchorage position: N/A
Tested anchorage position: N/A

A blanket and visor were not used in the suppression testing because they did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted Rear Facing</td>
<td>Forward 6 *</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>131</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>132</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted Rear Facing</td>
<td>Forward 10 *</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted Forward Facing</td>
<td>Forward 7 *</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft detent position with respect to the foremost position. (1 = Full Forward; 36 = Full Rearward; 36 total Seat Slide detents)

Successful Unbelted Representative 5th Percentile Female Reactivation was performed with the seat in the Rearward position. (Human Identification Code 036; 49.7 kg 149.9 cm)
DATA SHEET 17 SUMMARY
Suppression Test Using 12-Month-Old CRABI Dummy (Part 572, Subpart R)
Section B Rear Facing CRS

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90514</th>
<th>TEST DATE:</th>
<th>3/23/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>WD</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>062</td>
</tr>
</tbody>
</table>

CHILD RESTRAINT NAME:	Evenflo
CHILD RESTRAINT MODEL:	First Choice 204
DATE OF MANUFACTURE:	6-20-2000

Base: __On __Off _X_ N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 25° torso angle with H-point machine
Tested seat back angle: 25° torso angle with H-point machine
Manufacturer's specified anchorage position: N/A
Tested anchorage position: N/A

A blanket and visor were not used in the suppression testing because they did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward 16 *</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>132</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>128</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward 5 *</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft detent position with respect to the foremost position. (1 = Full Forward; 36 = Full Rearward; 36 total Seat Slide detents)

Successful Unbelted Representative 5th Percentile Female Reactivation was performed with the seat in the Middle position. (Human Identification Code 036; 49.7 kg 149.9 cm)
DATA SHEET 17 SUMMARY
Suppression Test Using 12-Month-Old CRABI Dummy (Part 572, Subpart R)
Section B Rear Facing CRS

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90514</th>
<th>TEST DATE:</th>
<th>3/23/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>WD</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RESTRAINT NAME:</th>
<th>Graco</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILD RESTRAINT MODEL:</td>
<td>Infant 8457</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>8-31-2000</td>
</tr>
</tbody>
</table>

Base: _X_ On ___ Off ___N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 25° torso angle with H-point machine
Tested seat back angle: 25° torso angle with H-point machine
Manufacturer's specified anchorage position: N/A
Tested anchorage position: N/A

A blanket and visor were not used in the suppression testing because they did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward 4 *</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear Facing</td>
<td>Middle</td>
<td>132</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>128</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted Rear Facing</td>
<td>Forward 10 *</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted Forward Facing</td>
<td>Forward 11 *</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft detent position with respect to the foremost position. (1 = Full Forward; 36 = Full Rearward; 36 total Seat Slide detents)
DATA SHEET 17 SUMMARY

Suppression Test Using 12-Month-Old CRABI Dummy (Part 572, Subpart R)
Section B Rear Facing CRS

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90514</th>
<th>TEST DATE:</th>
<th>3/23/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>WD</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>062</td>
</tr>
</tbody>
</table>

CHILD RESTRAINT NAME:	Graco
CHILD RESTRAINT MODEL:	Infant 8457
DATE OF MANUFACTURE:	8-31-2000

- Base: **On** _X_ **Off** __N/A-**Restraint does not have a removable base

- Manufacturer's design seat back angle: 25° torso angle with H-point machine
- Tested seat back angle: 25° torso angle with H-point machine
- Manufacturer's specified anchorage position: N/A
- Tested anchorage position: N/A

A blanket and visor were not used in the suppression testing because they did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted Rear Facing</td>
<td>Forward 15 *</td>
<td>131</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>130</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted Rear Facing</td>
<td>Forward</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted Forward Facing</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft detent position with respect to the foremost position. (1 = Full Forward; 36 = Full Rearward; 36 total Seat Slide detents)

Successful Unbelted Representative 5th Percentile Female Reactivation was performed with the seat in the Rearward position. (Human Identification Code 036; 49.7 kg 149.9 cm)
DATA SHEET 17 SUMMARY
Suppression Test Using 12-Month-Old CRABI Dummy (Part 572, Subpart R)
Section C Forward Facing Convertible CRS

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90514</th>
<th>TEST DATE:</th>
<th>3/23/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>WD</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RESTRAINT NAME:</th>
<th>Britax</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILD RERAINT MODEL:</td>
<td>Roundabout 161</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>7-21-2000</td>
</tr>
</tbody>
</table>

Base: __On __Off __X N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 25° torso angle with H-point machine
Tested seat back angle: 25° torso angle with H-point machine
Manufacturer's specified anchorage position: N/A
Tested anchorage position: N/A

A blanket was not used in the suppression testing because it did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>131</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>131</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>128</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted Representative 5th Percentile Female Reactivation was performed with the seat in the Forward position. (Human Identification Code 036; 49.7 kg 149.9 cm)
DATA SHEET 17 SUMMARY
Suppression Test Using 12-Month-Old CRABI Dummy (Part 572, Subpart R)
Section C Forward Facing Convertible CRS

<table>
<thead>
<tr>
<th>NHTSA NO.</th>
<th>TEST DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C90514</td>
<td>3/23/09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LABORATORY</th>
<th>TECHNICIANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGA</td>
<td>WD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DUMMY TYPE</th>
<th>DUMMY SERIAL NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Month Old</td>
<td>062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RESTRAINT NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Century</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RESTRAINT MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encore 4612</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE OF MANUFACTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-16-2000</td>
</tr>
</tbody>
</table>

Base: __On __Off _X N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 25° torso angle with H-point machine
Tested seat back angle: 25° torso angle with H-point machine
Manufacturer's specified anchorage position: N/A
Tested anchorage position: N/A

A blanket was not used in the suppression testing because it did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>131</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Belted</td>
<td>Rearward</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>132</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>132</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted Representative 5th Percentile Female Reactivation was performed with the seat in the Forward position. (Human Identification Code 036; 49.7 kg 149.9 cm)
DATA SHEET 17 SUMMARY
Suppression Test Using 12-Month-Old CRABI Dummy (Part 572, Subpart R)
Section C Forward Facing Convertible CRS

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90514</th>
<th>TEST DATE:</th>
<th>3/23/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>WD</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>062</td>
</tr>
</tbody>
</table>

CHILD RESTRAINT NAME:	Evenflo
CHILD RESTRAINT MODEL:	Medallion 254
DATE OF MANUFACTURE:	6-1-2000

Base: __On ___Off _X_ N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 25° torso angle with H-point machine
Tested seat back angle: 25° torso angle with H-point machine
Manufacturer's specified anchorage position: N/A
Tested anchorage position: N/A

A blanket was not used in the suppression testing because it did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>129</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>131</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>129</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>128</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>131</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Rear</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted Representative 5th Percentile Female Reactivation was performed with the seat in the Middle position. (Human Identification Code 036; 49.7 kg 149.9 cm)
DATA SHEET 18 SUMMARY
Suppression Test Using Newborn Infant Dummy (Part 572, Subpart K)
Section A Car Bed

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90514</th>
<th>TEST DATE:</th>
<th>3/23/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>WD</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>Newborn Infant</td>
<td>DUMMY SERIAL NO.:</td>
<td>003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAR BED NAME:</th>
<th>Cosco</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAR BED MODEL:</td>
<td>Dream Ride 02-719</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>6-16-2000</td>
</tr>
</tbody>
</table>

Base: ___On ___Off ___X N/A-Restraint does not have a removable base
(A car bed with a removable base shall be treated as two separate models, i.e. this form and
test procedure will be completed with the base on and then repeated on a new form with the
base off.

Manufacturer’s design seat back angle: 25° torso angle with H-point machine
Tested seat back angle: 25° torso angle with H-point machine
Manufacturer’s specified anchorage position: N/A
Tested anchorage position: N/A

A blanket and visor were not used in the suppression testing because they did not affect the
weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forward</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted Representative 5th Percentile Female Reactivation was performed with the
seat in the Forward position. (Human Identification Code 036; 49.7 kg 149.9 cm)
DATA SHEET 25 SUMMARY
Low Risk Deployment Tests Using an Unbelted 3 Year Old Dummy
(Part 572, Subpart P) (S22) Position 1 - Chest On Instrument Panel (S22.4.3)

<table>
<thead>
<tr>
<th>NHTSA NO.</th>
<th>C90514</th>
<th>TEST DATE:</th>
<th>4/22/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>WD / AP</td>
</tr>
<tr>
<td>DUMMY TYPE</td>
<td>3 Year Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>032</td>
</tr>
</tbody>
</table>

Manufacturer's design seat back angle: 25° torso angle with H-point machine
Tested seat back angle: 25° torso angle with H-point machine
Tested seat position: Full Aft

Thorax cavity angle: 0.3°
Thigh angle: 22.5°
Point 1 height: 1 mm – Below Plane C Air Bag Height

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>240.0</td>
<td>240.0</td>
</tr>
</tbody>
</table>

3-Year-Old SN 032 Position 1 (Chest on Instrument Panel) 4/22/09

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>570</td>
<td>51</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>37.9</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>14.6</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>10.4</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>10.9</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1130 N</td>
<td>532</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1380 N</td>
<td>7</td>
</tr>
<tr>
<td>Chest g</td>
<td>55 g</td>
<td>11</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>34 mm</td>
<td>3</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 100 ms after the initial deployment of the air bag. (S4.11(b))

The original equipment parts were used for this deployment.
DATA SHEET 26 SUMMARY
Low Risk Deployment Tests Using an Unbelted 3 Year Old Dummy
(Part 572, Subpart P) (S22) Position 2 - Head On Instrument Panel (S22.4.3)

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90514</th>
<th>TEST DATE:</th>
<th>4/23/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>WD / JL</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>3 Year Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>032</td>
</tr>
</tbody>
</table>

Manufacturer's design seat back angle: 25° torso angle with H-point machine
Tested seat back angle: 25° torso angle with H-point machine
Tested seat position: Full Forward
Thorax cavity angle: 0.0°
Thigh angle: 4.6°

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>240.0</td>
<td>240.0</td>
</tr>
</tbody>
</table>

3-Year-Old SN 032 Position 2 (Head on Instrument Panel) 4/23/09

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>570</td>
<td>30</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>59.4</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>18.5</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>9.4</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>13.0</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1130 N</td>
<td>141</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1380 N</td>
<td>267</td>
</tr>
<tr>
<td>Chest g</td>
<td>55 g</td>
<td>7</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>34 mm</td>
<td>1</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 100 ms after the initial deployment of the air bag. (S4.11(b))

A new air bag and instrument panel were used for this deployment.
DATA SHEET 27 SUMMARY
Low Risk Deployment Tests Using an Unbelted 6-Year-Old Dummy (Part 572, Subpart N) (S24)
Position 1 – Chest on Instrument Panel (S24.4.2)

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90514</th>
<th>TEST DATE:</th>
<th>4/23/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>WD / JL</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>6 Year Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>155</td>
</tr>
</tbody>
</table>

Manufacturer’s design seat back angle: 25° torso angle with H-point machine
Tested seat back angle: 25° torso angle with H-point machine
Tested seat position: Full Aft
Thorax cavity angle: 5.9°
Point 1 height: 2 mm Above Plane C Air Bag Height

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>240.0</td>
<td>240.0</td>
</tr>
</tbody>
</table>

6-Year-Old SN 155 Position 1 (Chest on Instrument Panel) 4/23/09

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>22</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>74.1</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>18.9</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>0.3</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>11.2</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1490 N</td>
<td>450</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1820 N</td>
<td>11</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>7</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>40 mm</td>
<td>2</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 100 ms after the initial deployment of the air bag. (S4.11(b))

A new air bag and instrument panel were used for this deployment.
Low Risk Deployment Tests Using an Unbelted 6 Year Old Dummy
(Part 572, Subpart P) (S24) Position 2 - Head On Instrument Panel (S24.4.3)

Manufacturer’s design seat back angle: 25° torso angle with H-point machine
Tested seat back angle: 25° torso angle with H-point machine
Tested seat position: Full Forward
Thorax cavity angle: 23.9°
Thigh angle: 8.8°

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>240.0</td>
<td>240.0</td>
</tr>
</tbody>
</table>

6-Year-Old SN 155 Position 2 (Head on Instrument Panel) 4/23/09

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>125</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>33.3</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>22.7</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>7.3</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>15.4</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1490 N</td>
<td>544</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1820 N</td>
<td>586</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>10</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>40 mm</td>
<td>2</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 100 ms after the initial deployment of the air bag. (S4.11(b))

A new air bag and instrument panel were used for this deployment.
DATA SHEET 29 SUMMARY
Low Risk Deployment Tests Using an Unbelted 5th Percentile Female Dummy (Part 572, Subpart O) (S26) Position 1 - Chin On Module (S26.2)

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90514</th>
<th>TEST DATE:</th>
<th>4/22/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>JL / WD</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>5th Percentile Female</td>
<td>DUMMY SERIAL NO.:</td>
<td>124</td>
</tr>
</tbody>
</table>

Manufacturer's design seat back angle: 25° torso angle with H-point machine
Tested seat back angle: 25° torso angle with H-point machine
Tested seat position: Full Aft
Tested steering wheel angle: 19.9°
Thorax cavity angle: 25.8°
Bottom of chin height: 0 mm - At Plane F Module Height

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>60.0</td>
<td>60.0</td>
</tr>
</tbody>
</table>

5th Percentile Female SN 124 Position 1 (Chin On Module) 4/22/09

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>19</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>73.0</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>11.8</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>3.1</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>1.1</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>808</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>5</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>12</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>8</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>51</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>54</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 125 ms after the initiation of the final stage of air bag deployment designed to deploy in any full frontal rigid barrier crash up to 26 km/h. (S4.11(d))
Second stage fire time of 60 ms; Injuries calculated on 0 ms to 185 ms

The original equipment parts were used for this deployment.
Low Risk Deployment Tests Using an Unbelted 5th Percentile Female Dummy (Part 572, Subpart O) (S26) Position 2 - Chin On Rim (S26.3)

<table>
<thead>
<tr>
<th>NHTSA NO.</th>
<th>C90514</th>
<th>TEST DATE:</th>
<th>4/22/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>WD / JL</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>5th Percentile Female</td>
<td>DUMMY SERIAL NO.:</td>
<td>124</td>
</tr>
</tbody>
</table>

Manufacturer’s design seat back angle: 25° torso angle with H-point machine
Tested seat back angle: 25° torso angle with H-point machine
Tested seat position: Full Aft
Tested steering wheel angle: 17.9° *
Thorax cavity angle: 23.9°
Chin Point height: 0 mm - At Steering Wheel Target
Note: The chin on rim steering wheel target is 10 mm below the highest point on the steering wheel

*The dummy contacted the windshield with the steering wheel at mid position. The steering controls were adjusted to lower the upper steering wheel rim the necessary amount to bring the Chin Point coincident with the upper steering wheel rim. The rear thorax cavity was adjusted along with the steering wheel angle.

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>60.0</td>
<td>60.0</td>
</tr>
</tbody>
</table>

5th Percentile Female SN 124 Position 2 (Chin On Rim) 4/22/09

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>27</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>29.9</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>55.1</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>6.2</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>61.3</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>733</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>181</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>21</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>17</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>23</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>15</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 125 ms after the initiation of the final stage of air bag deployment designed to deploy in any full frontal rigid barrier crash up to 26 km/h. (S4.11(d))
Second stage fire time of 100 ms; Injuries calculated on 0 ms to 225 ms

A new air bag was used for this deployment.
DATA SHEET 32

VEHICLE WEIGHT, FUEL TANK, AND ATTITUDE DATA

Test Vehicle: 2009 BMW 128i Coupe
Test Program: FMVSS 208 Compliance
Test Technician: Jamie Aide
NHTSA No.: C90514
Test Date: 5/8/09

IMPACT ANGLE: Zero Degrees
BELTED DUMMIES (YES/NO): No
TEST SPEED: X 32 to 40 kmph | 0 to 48 kmph | 0 to 56 kmph
DRIVER DUMMY: X 5th female | 50th male
PASSENGER DUMMY: X 5th female | 50th male

1. Fill the transmission with transmission fluid to the satisfactory range.
2. Drain fuel from vehicle.
3. Run the engine until fuel remaining in the fuel delivery system is used and the engine stops.
4. Record the useable fuel tank capacity supplied by the COTR.
 Useable Fuel Tank Capacity supplied by COTR: 52.0 liters (13.7 gallons)
5. Record the fuel tank capacity supplied in the owner’s manual.
 Useable Fuel Tank Capacity in owner’s manual: 52.0 liters (13.7 gallons)
6. Using purple dyed Stoddard solvent having the physical and chemical properties of Type 1 solvent or cleaning fluid, Table 1, ASTM Standard D484-71, “Standard Specifications for Hydrocarbon Dry-cleaning Solvents,” or gasoline, fill the fuel tank.
 Amount Added: 52.0 liters (13.7 gallons)
7. Fill the coolant system to capacity.
8. Fill the engine with motor oil to the Max. mark on the dip stick.
9. Fill the brake reservoir with brake fluid to its normal level.
10. Fill the windshield washer reservoir to capacity.
11. Inflate the tires to the tire pressure on the tire placard. If no tire placard is available, inflate the tires to the recommended pressure in the owner’s manual.
 Tire placard pressure: RF: 32 psi LF: 32 psi RR: 35 psi LR: 35 psi
 Owner’s manual pressure: RF: 32 psi LF: 32 psi RR: 35 psi LR: 35 psi
 Actual inflated pressure: RF: 32 psi LF: 32 psi RR: 35 psi LR: 35 psi
12. Record the vehicle weight at each wheel to determine the unloaded vehicle weight (UVW), i.e. “as delivered” weight.
 Right Front (kg): 360.6 Right Rear (kg): 358.3
 Left Front (kg): 360.6 Left Rear (kg): 347.9
 Total Front (kg): 721.2 Total Rear (kg): 706.2
 % Total Weight: 50.5 % Total Weight: 49.5
 UVW = TOTAL FRONT PLUS TOTAL REAR (KG): 1427.4
13. UVW Test Vehicle Attitude: (All dimensions in millimeters)
13.1 Mark a point on the vehicle above the center of each wheel.
13.2 Place the vehicle on a level surface.
13.3 Measure perpendicular to the level surface to the 4 points marked on the body and record the measurements.
 RF: 671 LF: 673 RR: 671 LR: 673
14. Calculate the Rated Cargo and Luggage Weight (RCLW): 128 kg

14.1 Does the vehicle have the vehicle capacity weight (VCW) on the certification label or tire placard?

- Yes, go to 14.3
- No, go to 14.2

14.2 VCW = Gross Vehicle Weight - UVW

VCW = __________ - __________ = __________

14.3 VCW = 400 kg (882 lbs)

14.4 Does the certification or tire placard contain the Designated Seating Capacity (DSC)?

- Yes, go to 14.6
- No, go to 14.5 and skip 14.6

14.5 DSC = Total number of seat belt assemblies = __________

14.6 DSC = 4

14.7 RCLW = VCW - (68 kg x DSC) = 400 kg - (68 kg x 4) = 128 kg

14.8 Is the vehicle certified as a truck, MPV or bus (see the certification label on the door jamb)?

- Yes, if the calculated RCLW is greater than 136 kg, use 136 kg as the RCLW. (S8.1.1)
- No, use the RCLW calculated in 14.7

15. Fully Loaded Weight (100% fuel fill): 1653.4 kg

15.1 Place the appropriate test dummy in both front outboard seating positions.

- Driver: 5th female __ 50th male
- Passenger: 5th female __ 50th male

15.2 Load the vehicle with the RCLW from 14.7 or 14.8 whichever is applicable.

15.3 Place the RCLW in the cargo area. Center the load over the longitudinal centerline of the vehicle. (S8.1.1 (d))

15.4 Record the vehicle weight at each wheel to determine the Fully Loaded Weight.

<table>
<thead>
<tr>
<th>Right Front (kg):</th>
<th>378.3</th>
<th>Right Rear (kg):</th>
<th>451.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Front (kg):</td>
<td>378.8</td>
<td>Left Rear (kg):</td>
<td>445.0</td>
</tr>
<tr>
<td>Total Front (kg):</td>
<td>757.1</td>
<td>Total Rear (kg):</td>
<td>896.3</td>
</tr>
<tr>
<td>% Total Weight:</td>
<td>45.8</td>
<td>% Total Weight:</td>
<td>54.2</td>
</tr>
<tr>
<td>% GVW</td>
<td>49.1</td>
<td>% GVW</td>
<td>54.4</td>
</tr>
</tbody>
</table>

(% GVW = Axle GVW divided by Vehicle GVW)

Fully Loaded Weight = Total Front Plus Total Rear (kg): 1653.4

16. Fully Loaded Test Vehicle Attitude: (All dimensions in millimeters)

16.1 Place the vehicle on a level surface.

16.2 Measure perpendicular to the level surface to the 4 points marked on the body (see 13.1 above) and record the measurements.

| RF: 666 | LF: 666 | RR: 643 | LR: 641 |

17. Drain the fuel system.

18. Using purple dyed Stoddard solvent having the physical and chemical properties of Type 1 solvent or cleaning fluid, Table 1, ASTM Standard D484-71, “Standard Specifications for Hydrocarbon Dry-cleaning Solvents,” fill the fuel tank to 92 - 94 percent of useable capacity.

Fuel tank capacity x .94 = 52.0 liters (13.7 gallons) x .94 = 48.9 liters (12.8 gallons)

Amount added: 48.1 liters (12.7 gallons) 92.4%

19. Crank the engine to fill the fuel delivery system with Stoddard solvent.
20. Calculate the test weight range.
20.1 Calculated Weight = UVW (see 12 above) + RCLW (see 14 above) + 2x(dummy weight)
\[1653.4 \text{ kg} = 1427.4 \text{ kg} + 128.0 \text{ kg} + 98.0 \text{ kg}\]
20.2 Test Weight Range = Calculated Weight (- 4.5 kg, - 9 kg.)
Max. Test Weight = Calculated Test Weight - 4.5 kg = 1648.9 kg
Min. Test Weight = Calculated Test Weight - 9 kg = 1644.4 kg
21. Remove the RCLW from the cargo area.
22. Drain transmission fluid, engine coolant, motor oil, and windshield washer fluid from the test vehicle so that Stoddard solvent leakage from the fuel system will be evident.
23. Vehicle Components Removed For Weight Reduction:
None
24. Secure the equipment and ballast in the load carrying area and distribute it, as nearly as possible, to obtain the proportion of axle weight indicated by the gross axle weight ratings and center it over the longitudinal centerline of the vehicle.
25. If necessary, add ballast to achieve the actual test weight.
\[\text{N/A}\]
Weight of Ballast: 77.1 kg
26. Ballast, including test equipment, must be contained so that it will not shift during the impact event or interfere with data collection or interfere with high-speed film recordings or affect the structural integrity of the vehicle or do anything else to affect test results. Care must be taken to assure that any attachment hardware added to the vehicle is not in the vicinity of the fuel tank or lines.
27. Record the vehicle weight at each wheel to determine the actual test weight.
\[
\begin{array}{ccc}
\text{Right Front (kg)}: & 376.9 & \text{Right Rear (kg)}: & 444.1 \\
\text{Left Front (kg)}: & 386.9 & \text{Left Rear (kg)}: & 438.6 \\
\text{Total Front (kg)}: & 763.8 & \text{Total Rear (kg)}: & 882.7 \\
\% \text{ Total Weight}: & 46.4 & \% \text{ Total Weight}: & 53.6 \\
\% \text{ GVW}: & 49.1 & \% \text{ GVW}: & 54.4 \\
\end{array}
\]
(TOTAL FRONT PLUS TOTAL REAR (kg): 1646.5)
28. Is the test weight between the Max. Weight and the Min. Weight (See 20.2)?
Yes
29. Test Weight Vehicle Attitude: (all dimensions in millimeters)
29.1 Place the vehicle on a level surface.
29.2 Measure perpendicular to the level surface to the 4 points marked on the body (see 13 above) and record the measurements.
\[
\begin{array}{cccc}
\text{RF}: & 671 & \text{LF}: & 671 \\
\text{RR}: & 647 & \text{LR}: & 647 \\
\end{array}
\]
30. Summary of test attitude
30.1 AS DELIVERED:
\[
\begin{array}{cccc}
\text{RF}: & 671 & \text{LF}: & 673 \\
\text{RR}: & 671 & \text{LR}: & 673 \\
\end{array}
\]
AS TESTED:
\[
\begin{array}{cccc}
\text{RF}: & 671 & \text{LF}: & 671 \\
\text{RR}: & 647 & \text{LR}: & 647 \\
\end{array}
\]
FULLY LOADED:
\[
\begin{array}{cccc}
\text{RF}: & 666 & \text{LF}: & 666 \\
\text{RR}: & 643 & \text{LR}: & 641 \\
\end{array}
\]
30.2 Is the “as tested” test attitude equal to or between the “fully loaded” and “as delivered” attitude?
Yes
31. REMARKS:
Signature: __________________ Date: 5/8/09
I certify that I have read and performed each instruction.
DATA SHEET 33

VEHICLE ACCELEROMETER LOCATION AND MEASUREMENT

Test Vehicle: 2009 BMW 128i Coupe NHTSA No.: C90514
Test Program: FMVSS 208 Compliance Test Date: 5/8/09
Test Technician: Jamie Aide

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>X 5th female</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>X 5th female</td>
</tr>
</tbody>
</table>

1. Find the location where the vertical plane parallel to the longitudinal centerline of the vehicle and through the center of the left front outboard seating position intersects the left rear seat cross member. Install an accelerometer at this intersection on the rear seat cross member to record x-direction accelerations. Record the location on the following chart.

2. Find the location where the vertical plane parallel to the longitudinal centerline of the vehicle and through the center of the right front outboard seating position intersects the right rear seat cross member. Install an accelerometer at this intersection on the rear seat cross member to record x-direction accelerations. Record the location on the following chart.

3. Find the location where a vertical plane through the longitudinal centerline of the vehicle and a vertical transverse plane through the center of the two wheels on opposite sides of the engine intersect at the top of the engine. Install an accelerometer at this intersection to record x-direction accelerations. Record the location on the following chart.

4. Find the location where a vertical plane through the longitudinal centerline of the vehicle and a vertical transverse plane through the center of the two wheels on opposite sides of the engine intersect the bottom of the engine. Install an accelerometer at this intersection to record x-direction accelerations. Record the location on the following chart.

5. Install an accelerometer on the right front brake caliper to record x-direction accelerations. Record the location on the following chart.

6. Find the location where a vertical plane through the longitudinal centerline of the vehicle intersects the top of the instrument panel. Install an accelerometer at this intersection to record x-direction accelerations. Record the location on the following chart.

7. Install an accelerometer on the left front brake caliper to record x-direction accelerations. Record the location on the following chart.

8. Find the location where a vertical plane through the longitudinal centerline of the vehicle intersects the floor of the trunk. Install an accelerometer on the trunk floor at this intersection to record z-direction accelerations. Record the location on the following chart.

REMARKS:

I certify that I have read and performed each instruction.

Signature: Jamie Aide Date: 5/8/09
VEHICLE ACCELEROMETER LOCATION AND DATA SUMMARY

ENGINE

CENTERLINE OF FRONT WHEELS

TOP VIEW

ACCELEROMETER COORDINATE SYSTEM (POSITIVE DIRECTION SHOWN)

REAR SEAT CUSHION ASSY. FRONT ATTACHMENT BRACKET SUPPORT

LEFT SIDE VIEW

Dimensions Corresponding To The Letters “A” Through “K” (Excluding “I”) Are Recorded In The Table On The Following Page. Accelerometers Corresponding To The Numbers 1 Through 8 Are Specified On The Preceding Page.
DATA SHEET 33
VEHICLE ACCELEROMETER LOCATION AND MEASUREMENTS

<table>
<thead>
<tr>
<th>DIMENSION</th>
<th>LENGTH (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRETEST VALUES</td>
<td></td>
</tr>
<tr>
<td>A (LH Rear Seat Xmbr)</td>
<td>409</td>
</tr>
<tr>
<td>B (RH Rear Seat Xmbr)</td>
<td>411</td>
</tr>
<tr>
<td>C (Engine Top)</td>
<td>3698</td>
</tr>
<tr>
<td>D (Engine Bottom)</td>
<td>3337</td>
</tr>
<tr>
<td>E (Caliper)</td>
<td>Right Side: 3496</td>
</tr>
<tr>
<td>F (Left Caliper)</td>
<td>632</td>
</tr>
<tr>
<td>G (IP)</td>
<td>2733</td>
</tr>
<tr>
<td>H (Seat)</td>
<td>1657</td>
</tr>
<tr>
<td>J (Right Caliper)</td>
<td>632</td>
</tr>
<tr>
<td>K (Trunk)</td>
<td>694</td>
</tr>
<tr>
<td>POST TEST VALUES</td>
<td></td>
</tr>
<tr>
<td>A (LH Rear Seat Xmbr)</td>
<td>409</td>
</tr>
<tr>
<td>B (RH Rear Seat Xmbr)</td>
<td>410</td>
</tr>
<tr>
<td>C (Engine Top)</td>
<td>3561</td>
</tr>
<tr>
<td>D (Engine Bottom)</td>
<td>3210</td>
</tr>
<tr>
<td>E (Caliper)</td>
<td>Right Side: 3450</td>
</tr>
<tr>
<td>F (Left Caliper)</td>
<td>630</td>
</tr>
<tr>
<td>G (IP)</td>
<td>2719</td>
</tr>
<tr>
<td>H (Seat)</td>
<td>1660</td>
</tr>
<tr>
<td>J (Right Caliper)</td>
<td>623</td>
</tr>
<tr>
<td>K (Trunk)</td>
<td>692</td>
</tr>
</tbody>
</table>
DATA SHEET 34

PHOTOGRAPHIC TARGETS

Test Vehicle: 2009 BMW 128i Coupe
Test Program: FMVSS 208 Compliance
Test Technician: Jamie Aide
NHTSA No.: C90514
Test Date: 5/8/09

IMPACT ANGLE: Zero Degrees
BELTED DUMMIES (YES/NO): No
TEST SPEED: X 32 to 40 kmph | 0 to 48 kmph | 0 to 56 kmph
DRIVER DUMMY: X 5th female | 50th male
PASSENGER DUMMY: X 5th female | 50th male

1. **FMVSS 208 vehicle targeting requirements** (See Figures 28A and 28B)
 1.1 Targets A1 and A2 are on flat rectangular panels.
 1.2 Three circular targets at least 90 mm in diameter and with black and yellow quadrants are mounted at the front on the outboard sides of A1 and A2. The center of each circular target is 100 mm from the one next to it.
 Distance between targets (mm): 100 mm
 1.3 Three circular targets at least 90 mm in diameter and with black and yellow quadrants are mounted at the back on the outboard sides of on A1 and A2. The center of each circular target is 100 mm from the one next to it.
 Distance between targets (mm): 100 mm
 1.4 The distance between the first circular target at the front of A1 and A2 and the last circular target at the back of A1 and A2 is at least 915 mm.
 Distance between the first and last circular targets (mm): 916 mm
 1.5 Firmly fix target A1 on the vehicle roof in the vertical longitudinal plane that is coincident with the midsagittal plane of the driver dummy.
 1.6 Firmly fix target A2 on the vehicle roof in the vertical longitudinal plane that is coincident with the midsagittal plane of the passenger dummy.
 1.7 Two circular targets (C1 and C2) at least 90 mm in diameter and with black and yellow quadrants are mounted on the outside of the driver door. The centers of each circular target are at least 610 mm apart.
 Distance between targets (mm): 610 mm
 1.8 Two circular targets (C1 and C2) at least 90 mm in diameter and with black and yellow quadrants are mounted on the outside of the passenger door. The centers of each circular target are at least 610 mm apart.
 Distance between targets (mm): 614 mm
 1.9 Place tape with squares having alternating colors on the top portion of the steering wheel.
 1.10 Chalk the bottom portion of the steering wheel.
 1.11 Is this an offset test?
 Yes, continue with this section
 No, go to 2.
 1.12 Measure the width of the vehicle.
 Vehicle width (mm):
 1.13 Find the centerline of the vehicle. (½ of the vehicle width)
 1.14 Find the line parallel to the centerline of the vehicle and 0.1 x vehicle width from the centerline of the vehicle.
1.15 Apply 25 mm wide tape with alternating black and yellow squares parallel to and on each side of the line found in 1.14. The edge of each tape shall be 50 mm from the line found in 1.14. The tape shall extend from the bottom of the bumper to the front edge of the windshield. (Figure 28D)

2. Barrier Targeting

2.1 Fix two stationary targets D1 and D2 to the barrier as shown in the Figure 28A. One target is in the vertical longitudinal plane that is coincident with the midsagittal plane of the driver dummy. The other is in the vertical longitudinal plane that is coincident with the midsagittal plane of the passenger dummy.

2.2 Targets D1 and D2 are on a rectangular panel.

2.3 Three circular targets at least 90 mm in diameter and with black and yellow quadrants are mounted on the sides of the rectangular panel away from the longitudinal centerline of the vehicle. The center of each circular target is 100 mm from the one next to it.

Distance between circular targets on D1 (mm): 100 mm
Distance between circular targets on D2 (mm): 100 mm

3. FMVSS 208 Dummy Targeting Requirements

3.1 Place a circular target with black and yellow quadrants on both sides of the driver dummy head as close as possible to the center of gravity of the head in the x and z direction (relative to the measuring directions of the accelerometers).

3.2 Place a circular target with black and yellow quadrants on both sides of the passenger dummy head as close as possible to the center of gravity of the head in the x and z direction (relative to the measuring directions of the accelerometers).

3.3 Place a circular target with black and yellow quadrants on the outboard shoulder of the driver dummy. Place the target as high up on the arm as possible at the intersection of the arm and shoulder. The sleeve of the shirt on the dummy may be cut to make the target visible, but do not remove any material.

3.4 Place a circular target with black and yellow quadrants on the outboard shoulder of the passenger dummy. Place the target as high up on the arm as possible at the intersection of the arm and shoulder. The sleeve of the shirt on the dummy may be cut to make the target visible, but do not remove any material.

4. FMVSS 204 Targeting Requirements

4.1 Is an FMVSS 204 indicant test ordered on the “COTR Vehicle Work Order?”

Yes, continue with this form.

No, this form is complete.

4.2 Resection panel (Figure 28C)

4.2.1 The panel deviates no more than 6 mm from perfect flatness when suspended vertically.

4.2.2 The 8 targets on the panel are circular targets at least 90 mm in diameter and with black and yellow quadrants.

4.2.3 The center of each of the 4 outer targets are placed within 1 mm of the corners of a square measuring 914 mm on each side.

4.2.4 Locate another square with 228 mm sides and with the center of this square coincident with the center of the 914 mm square.

4.2.5 The center of the 4 inner targets are placed at the midpoints of each of the 228 mm sides.

4.3 Place a circular target at least 90 mm in diameter and with black and yellow quadrants on a material (cardboard, metal, etc.) that can be taped to the top of the steering column.

4.4 Tape the target from 4.3 to the top of the steering column in a manner that does not interfere with the movement of the steering column in a crash.

REMARKS:

Signature: ____________________________ Date: 5/8/09

I certify that I have read and performed each instruction.
RESECTION PANEL TARGETING ALIGNMENT

CAR TOP TARGETS A1 & A2

RESECTION CONTROL POINTS PANEL

STEERING WHEEL

TEST RUN STEERING COLUMN CAMERA VIEW OF TYPICAL TIME ZERO VEHICLE POSITION

LEFT SIDE VIEW
PRE-RUN STEERING COLUMN HIGH SPEED CAMERA VIEW

LEFT SIDE VIEW

914 mm
DATA SHEET 35
CAMERA LOCATIONS

<table>
<thead>
<tr>
<th>CAMERANO.</th>
<th>VIEW</th>
<th>CAMERA POSITIONS (mm)</th>
<th>LENS (mm)</th>
<th>SPEED (fps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Real Time Left Side View</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Left Side View (Barrier face to front seat backs)</td>
<td>1190 -5060 1150</td>
<td>24</td>
<td>1000</td>
</tr>
<tr>
<td>3</td>
<td>Left Side View (Driver)</td>
<td>1420 -5410 1290</td>
<td>35</td>
<td>1000</td>
</tr>
<tr>
<td>4</td>
<td>Left Side View (B-post aimed toward center of steering wheel)</td>
<td>5420 -4720 2090</td>
<td>50</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td>Left Side View (Steering Column)</td>
<td>1360 -5480 1150</td>
<td>25</td>
<td>1000</td>
</tr>
<tr>
<td>6</td>
<td>Left Side View (Steering Column)</td>
<td>1360 -5410 750</td>
<td>25</td>
<td>1000</td>
</tr>
<tr>
<td>7</td>
<td>Right Side View (Overall)</td>
<td>2050 6180 1060</td>
<td>20</td>
<td>1000</td>
</tr>
<tr>
<td>8</td>
<td>Right Side View (Passenger)</td>
<td>1550 6330 1340</td>
<td>35</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>Right Side View (Angle)</td>
<td>5640 4900 2030</td>
<td>50</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td>Right Side View (Front door)</td>
<td>1170 5170 1220</td>
<td>24</td>
<td>1000</td>
</tr>
<tr>
<td>11</td>
<td>Front View Windshield</td>
<td>-285 0 2860</td>
<td>12.5</td>
<td>1000</td>
</tr>
<tr>
<td>12</td>
<td>Front View Driver</td>
<td>-135 -470 2180</td>
<td>24</td>
<td>1000</td>
</tr>
<tr>
<td>13</td>
<td>Front View Passenger</td>
<td>-110 420 2180</td>
<td>24</td>
<td>1000</td>
</tr>
<tr>
<td>14</td>
<td>Overhead Barrier Impact View</td>
<td>1620 0 5050</td>
<td>14</td>
<td>1000</td>
</tr>
<tr>
<td>15</td>
<td>Pit Camera Engine View</td>
<td>1110 0 -3150</td>
<td>24</td>
<td>1000</td>
</tr>
<tr>
<td>16</td>
<td>Pit Camera Fuel Tank View</td>
<td>2605 0 -3150</td>
<td>24</td>
<td>1000</td>
</tr>
</tbody>
</table>

*COORDINATES:
+X - forward of impact plane
+Y - right of monorail centerline
+Z - above ground level

Test Vehicle: 2009 BMW 128i Coupe
Test Program: FMVSS 208 Compliance
NHTSA No.: C90514
Test Date: 5/8/09
Time: 10:30 am
Seating Procedure 5th Percentile Female Driver Dummy (Part 572, Subpart O) (S16.2-S16.3)

1. Seat Position

<table>
<thead>
<tr>
<th>1.1 Position the seat’s adjustable lumbar supports so that the lumbar supports are in the lowest, retracted or deflated adjustment positions. (S16.2.10.1, S20.1.9.1, S20.4.1, S22.1.7.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X N/A – No lumbar adjustment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2 Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2, S20.1.9.2, S20.4.1, S22.1.7.1, S22.4.2.1, S22.4.3.1, S24.4.2.1, S26.2.3, S26.3.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X N/A – No additional support adjustment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.3 Position an adjustable leg support system in its rearmost position. (8/27/04 interpretation to Toyota)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X N/A – No adjustable leg support system</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.4 Mark a point (seat cushion reference point) on the side of the seat cushion that is between 150 mm and 250 mm from the front edge of the seat cushion. (S16.3.1.12)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1.5 Draw a line (seat cushion reference line) through the seat cushion reference point. (S16.3.1.13)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1.6 Use only the controls that primarily move the seat in the fore-aft direction to move the seat cushion reference point to the rearmost position. (S16.2.10.3.1, S22.1.7.3)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1.7 If the seat cushion adjusts fore-aft, independent of the seat back, use only the controls that primarily move the seat cushion in the fore-aft direction to move the seat cushion reference point to the rearmost position. (S16.2.10.3.1, S20.1.9.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X N/A – No independent fore-aft seat cushion adjustment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.8 Use any part of any control, other than the parts just used for fore-aft positioning, to determine the range of angles of the seat cushion reference line and to set the seat cushion reference line at the mid-angle. (S16.2.10.3.1)</th>
</tr>
</thead>
</table>

Maximum angle	4.1°
Minimum angle	0.9°
Mid-angle	2.5°
X. 1.9 If the seat and/or seat cushion height is adjustable, use any part of any control other
than the parts which primarily move the seat or seat cushion fore-aft, to put the seat
cushion reference point in its lowest position with the seat cushion reference line angle
at the mid-angle found in 1.8. (S16.2.10.3.1)
__N/A – No seat height adjustment

X. 1.10 Use only the controls that primarily move the seat in the fore-aft direction to verify the
seat is in the rearmost position.

X. 1.11 Use only the controls that primarily move the seat in the fore-aft direction to mark the
fore-aft seat positions. Mark each position so that there is a visual indication when the
seat is at a particular position. For manual seats, move the seat forward one detent at a
time and mark each detent. For power seats, mark only the rearmost, middle, and
foremost positions. Label three of the positions with the following: F for foremost, M for
mid-position (if there is no mid-position, label the closest adjustment position to the rear
of the mid-point), and R for rearmost.

X. 1.12 Use only the controls that primarily move the seat in the fore-aft direction to place the
seat in the rearmost position.

X. 1.13 Use any part of any control, other than the parts which primarily move the seat or seat
cushion fore-aft, to find and visually mark the maximum, minimum, and middle height of
the seat cushion reference point with the seat cushion reference line at the mid-angle
determined in 1.8. (S20.1.9.4, S22.1.2, S22.1.7.4, S22.3.1, S24.1.2, S24.3.1, S24.4.3.1, S26.2.3, S26.3.1)
__ N/A – No seat height adjustment. Go to 1.18

X. 1.14 Use only the controls that primarily move the seat and/or seat cushion in the fore-aft
direction to place the seat in the mid-fore-aft position.

X. 1.15 Use any part of any control, other than the parts which primarily move the seat or seat
cushion fore-aft, to find and visually mark the maximum, minimum, and middle height of
the seat cushion reference point with the seat cushion reference line at the mid-angle
determined in 1.8. (S20.1.9.4, S22.1.2, S22.1.7.4, S22.3.1, S24.1.2, S24.3.1)

X. 1.16 Use only the control that change the seat in the fore-aft direction to place the seat in the
foremost position. (S16.2.10.3.2)

X. 1.17 Use any part of any control, other than the parts which primarily move the seat or seat
cushion fore-aft, to find and visually mark the maximum, minimum, and middle height of
the seat cushion reference point with the seat cushion reference line at the mid-angle
determined in 1.8. (S16.2.10.3.3, S20.1.9.4, S22.1.2, S22.1.7.4, S22.3.1, S24.1.2, S24.3.1)

X. 1.18. Is the seat a bucket seat?
 X. Yes, go to 1.19 and skip 1.20
 _No, go to 1.20 and skip 1.19

X. 1.19 Bucket seats:
 Locate and mark for future reference the longitudinal centerline of the seat cushion. The
intersection of the vertical longitudinal plane that passes through the SgRP and the seat
cushion upper surface determines the longitudinal centerline of a bucket seat cushion.
(S16.3.1.10 & S20.1.10)
1.20 Bench seats (complete ONLY the one that is applicable to the seat being marked):
Locate and mark for future reference the longitudinal line on the seat cushion that marks the intersection of the vertical longitudinal plane through the centerline of the steering wheel and the seat cushion upper surface.

2. Head Restraint Position
 __N/A Vehicle contains automatic head restraints.
 __N/A, there is no head restraint adjustment Go to 3

X 2.1 Adjust the head restraint to its lowest position. (S16.2.10.2, S20.1.9.6 S20.4.1, S22.1.7.6, S22.4.2.1, S22.4.3.1, S24.4.3.1, S26.2.3, S26.3.1)

X 2.2 All adjustments of the head restraint shall be used to position it full forward. For example, if it rotates, rotate it such that the head restraint extends as far forward as possible. Mark the foremost position. (S16.2.10.2 & S16.3.4.4 & S20.1.9.6, S20.4.1, S22.4.2.1, S22.4.3.1, S24.4.3.1, S26.2.3, S26.3.1)

X 2.3 Measure the vertical distance from the top most point of the head restraint to the bottom most point. Locate and mark a horizontal plane through the midpoint of this distance. (S16.3.4.3)
 Vertical height of head restraint 180 mm
 Mid-point height 90 mm

X 3. Is the steering wheel adjustable up and down and/or in and out?
 X Yes – go to 3.1
 __No – Go to 4

X 3.1. Find and mark for future reference each up and down position. Label three of the positions with the following: H for highest, M for mid-position (if there is no mid-position, label the next lowest adjustment position), and L for lowest.
 __N/A – steering wheel is not adjustable up and down

X 3.2. Find and mark for future references each in and out position. Label three of the Positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the next rearmost adjustment position), and R for rearmost.
 __N/A – steering wheel is not adjustable in and out.

X 3.3. Use the markings to position the steering controls in the mid-position or if applicable next lowest detent position. (S16.2.9)

X 4. Place the SCRP in the full rearward, mid-height position, and mid-seat cushion angle, determined in Item 1. (S16.3.2.1.1)

X 5. If the vehicle has an adjustable accelerator pedal, place it in the full forward position. (S16.3.2.2.1)
 X N/A accelerator pedal not adjustable

X 6. Fully recline the seat back. (S16.3.2.1.2)
 __N/A seat back not adjustable.

X 7. Place the dummy in the seat with the legs at an angle of 120 degrees to the thighs. The calves should not be touching the seat cushion. (S16.3.2.1.2)

X 8. Position the dummy in the seat such that the midsagittal plane is coincident with the longitudinal seat cushion markings as determined in Item 1.19 or 1.20. (S16.3.2.1.3 and S16.3.2.1.4)
X_9. Hold down the dummy’s thighs and push rearward on the upper torso to maximize the pelvic angle. (S16.3.2.1.5)

X_10. Set the angle between the legs and the thighs to 120 degrees. (S16.3.2.1.6)

X_11. Set the transverse distance between the centers of the front of the knees at 160 to 170 mm. (6.3 to 6.7 inches) Center the knee separation with respect to the longitudinal seat cushion marking as determined in Item 1.19 or 1.20. (S16.3.2.1.6)

Record Knee Separation _165 mm_

X_12. Push rearward on the dummy’s knees until the pelvis contacts the seat back, or the backs of the calves contact the seat cushion, whichever occurs first. (S16.3.2.1.6)
 __Pelvis contacted seat back.
 X_Calves contacted seat cushion.

X_13. Gently rock the upper torso ± 5 degrees (approximately 51 mm (2 inches)) side-to-side three time. (S16.3.2.1.7)

X_14. If needed, extend the legs until the feet do not contact the floor pan. The thighs should be resting on the seat cushion. (S16.3.2.1.8)

X_15. Position the right foot until the foot is in line with a longitudinal vertical plane passing through the center of the accelerator pedal. Maintain the leg and thigh in a vertical plane. (S16.3.2.1.8)

X_16. Rotate the left leg and thigh laterally to equalize the distance between each knee and the longitudinal seat cushion marking as determined in Item 1.19 or 1.20. (S16.3.2.1.8)

X_17. Attempt to return the seat to the foremost fore-aft position, mid-height, and seat cushion mid-angle as determined in Item 1. The foot may contact and depress the accelerator and/or change the angle of the foot with respect to the leg. (S16.3.2.1.8)
 __ Foremost position achieved. Proceed to step 22.
 X_ Foremost not achieved because of foot interference. Proceed to step 19.
 __ Foremost not achieved because of steering wheel contact.

_ 18. If either of the dummy’s legs contact the steering wheel, move the steering wheel up the minimum amount required to avoid contact. If the steering wheel is not adjustable separate the knees the minimum required to avoid contact. (S16.3.2.1.8)
 __N/A- there was no leg contact
 __Steering wheel repositioned
 __Knees separated

X_19. If the left foot interferes with the clutch or brake pedals, rotate the left foot about the leg to provide clearance. If this is not sufficient, rotate the thigh outboard at the hip the minimum amount required for clearance. (S16.3.2.1.8)
 __ N/A, No foot interference with pedals.
 __ Foot adjusted to provide clearance.
 X_ Foot and Thigh adjusted to provide clearance.
X_ 20. Continue to move the seat. Use seat controls to line up the seat markings determined during item 1 to set the foremost fore-aft position, mid-height position and the seat cushion mid-angle. If the dummy contacts the interior move the seat rearward until a maximum clearance of 5 mm (0.2 inches) is achieved or the seat is in the closest detent position that does not cause dummy contact. (S16.3.2.1.8)
X__Foremost, mid-height position and the seat cushion mid-angle reached
__Dummy contact. Clearance set at maximum of 5mm
 Measured Clearance______________
__Dummy Contact. Seat set at nearest detent position.
 Seat position ___ detent positions rearward of foremost
 (foremost is position zero)

X_ 21. If the steering wheel was repositioned in step 18, return the steering wheel to the original position. If the steering wheel contacts the dummy before reaching the original position, position the wheel until a maximum clearance of 5mm (.2 inches) is achieved, or the steering wheel is in the closest detent position that does not cause dummy contact. (S16.3.2.1.8)
X__N/A Steering wheel was not repositioned.
__Original position achieved.
__Dummy contact. Clearance set at maximum of 5mm
 Measured Clearance______________
__Dummy Contact. Steering wheel set at nearest detent position.
 Steering wheel position ___ detent positions upward of original position.
 (Original position is position zero)

X_ 22. If the seat back is adjustable, rotate the seat back forward while holding the thighs in place. Continue rotating the seat back forward until the transverse instrument platform of the dummy head is level ± 0.5 degrees. If the head cannot be leveled using the seat back adjustment, or the seat back is not adjustable, use the lower neck bracket adjustment to level the head. If a level position cannot be achieved, minimize the angle. (S16.3.2.1.9)
X__Head Level Achieved. (Check all that apply)
 X__Head leveled using the adjustable seat back
 __Head leveled using the neck bracket.
 Head Angle __0.2________ degrees
__Head Level NOT Achieved. (Check all that apply)
 __Head adjusted using the adjustable seat back
 __Head adjusted using the neck bracket.
 Head Angle ____________ degrees

X_ 23. Verify the pelvis is not interfering with the seat bight. (S16.3.2.1.9)
X__No interference
 __Pelvis moved forward the minimum amount so that it is not caught in the seat bight.

X_ 24. Verify the dummy abdomen is properly installed. (S16.3.2.1.9)
X__Abdomen still seated properly into dummy
 __Abdomen was adjusted because it was not seated properly into dummy
X_25. Head Angle
 X N/A, neither the pelvis nor the abdomen were adjusted.

 X_25.1 Head still level (Go to 26)

 _25.2 Head level adjusted
 _Head Level Achieved. (Check all that apply)
 _Head leveled using the adjustable seat back
 _Head leveled using the neck bracket.
 Head Angle ____________ degrees
 _Head Level NOT Achieved. (Check all that apply)
 _Head level adjusted using the adjustable seat back
 _Head level adjusted using the neck bracket.
 Head Angle ____________ degrees

X_26. If the dummy torso contacts the steering wheel while performing step 22, reposition the
 steering wheel in the following order to eliminate contact. (S16.3.2.1.9)
 X N/A, No dummy torso contact with the steering wheel.

 _26.1 Adjust telescoping mechanism.
 _N/A No telescoping adjustment.
 _Adjustment performed (fill in appropriate change)
 Steering wheel moved ____ detent positions in the forward direction.
 Steering wheel moved ____ mm in the forward direction.

 _26.2 Adjust tilt mechanism.
 _N/A No tilt adjustment.
 _No adjustment performed.
 _Adjustment performed. (circle one)
 Steering wheel moved ____ detent positions Upward/Downward.
 Steering wheel moved ____ degrees Upward/Downward

 _26.3 Adjust Seat in the aft direction.
 _No Adjustment performed.
 _Seat moved aft ___ mm from original position.
 _Seat moved aft ___ detent positions from the original position.

X_27. Measure and set the pelvic angle using the pelvic angle gage TE-2504. The pelvic
 angle should be 20.0 degrees ± 2.5 degrees. If the pelvic angle cannot be set to the
 specified range because the head will not be level or because the dummy will have need
 major repositioning, adjust the pelvis as closely as possible to the angle range, but keep
 the head level. (S16.3.2.1.11)
 X Pelvic angle set to 20.0 degrees ± 2.5 degrees.
 X Pelvic angle of 20.0 degrees not achieved, the angular difference was minimized.
 X Record the pelvic angle. ___22.0_______ degrees

X_28. Check the dummy for contact with the interior after completing adjustments.
 (S16.3.2.1.12)
 X No contact.
 _Dummy in contact with interior.
 _Seat moved aft ___ mm from the previous position.
 _Seat moved aft ___ detent positions from the previous position.
X_29. Check the dummy to see if additional interior clearance is obtained, allowing the seat to be moved forward. (S16.3.2.1.12)
 X N/A, Seat already at foremost position.
 X Clearance unchanged. No adjustments required.
 __Additional clearance available
 __Seat moved Forward ____ mm from the previous position.
 __Seat moved Forward ____ detent positions from the previous position.

X_30. Driver's foot positioning, right foot. Place the foot perpendicular to the leg and determine if the heel contacts the floor pan at any leg position. If the heel contacts the floor pan proceed to step 31 otherwise, proceed to step 32. (S16.3.2.2.1)

X_31. Perform the following steps until either all steps are completed, or the foot contacts the accelerator pedal. Step 31.6 shall be completed in all cases. (S16.3.2.2.1(a))

X_31.1 With the rear of the heel contacting the floor pan, move the foot forward until pedal contact occurs or the foot is at the full forward position.

__31.2 If the vehicle has an adjustable accelerator pedal, move the pedals rearward until pedal contact occurs or the pedals reach the full rearward position.

__31.3 Extend the leg, allowing the heel to lose contact with the floor until the foot contacts the pedal. Do not raise the toe of the foot higher than the top of the accelerator pedal. If the foot does not contact the pedal, proceed to the next step. If pedal contact does occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward. (S16.3.2.2.3)

__31.4 Angle the foot to achieve contact between the foot and the pedal. If the foot does not contact the pedal, return the foot to the perpendicular orientation. If pedal contact does occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward. (S16.3.2.2.3)

__31.5 Align the centerline of the foot with the vertical-longitudinal plane passing through the center of the accelerator pedal. Place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward. (S16.3.2.2.3)

X_31.6 Record foot position
 X Pedal Contact achieved. Contact occurred at step _31.1__.
 X Heel contacts floor pan
 __Heel set ______ mm from floor pan.
 __Pedal Contact not achieved. Heel set ______ mm from the floor pan.
32. Perform the following steps until either all steps are completed, or the foot contacts the accelerator pedal. Step 30.5 shall be completed in all cases.

32.1 Extend the leg until the foot contacts the pedal. Do not raise the toe of the foot higher than the top of the accelerator pedal. If the foot does not contact the pedal, proceed to the next step. If pedal contact does occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward. (S16.3.2.2.1(b) & S16.3.2.2.3)

32.2 If the vehicle has an adjustable accelerator pedal, move the pedals rearward until pedal contact occurs or the pedals reach the full rearward position. If pedal contact does occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward. (S16.3.2.2.1(b) & S16.3.2.2.3)

N/A No pedal adjustment

32.3 Angle the foot to achieve contact between the foot and the pedal. If the foot does not contact the pedal, return the foot to the perpendicular orientation. If pedal contact does occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward. (S16.3.2.2.2 & S16.3.2.2.3)

32.4 Align the centerline of the foot in the same horizontal plane as the centerline of the accelerator pedal. Place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward. (S16.3.2.2.3)

32.5 Record foot position

Pedal Contact achieved. Contact occurred at step ________.

Heel set _____ mm from floor pan.

Pedal Contact not achieved. Heel set _____ mm from the floor pan.
X 33. Driver’s foot positioning, left foot.

X 33.1 Place the foot perpendicular to the leg and determine if the heel contacts the floor pan at any leg position. If the heel contacts the floor pan proceed to step 33.2, otherwise position the leg as perpendicular to the thigh as possible with the foot parallel to the floor pan. (S16.2.2.6)

X 33.2 Place the foot on the toe board with the heel resting on the floor pan as close to the intersection of the floor pan and the toe board as possible. Adjust the angle of the foot if necessary to contact the toe board. If the foot will not contact the toe board, set the foot perpendicular to the leg, and set the heel on the floor pan as far forward as possible. Avoid contact with the brake pedal, clutch pedal, wheel well projection, and footrest. To avoid this contact use the following three manipulations in the order listed, with each subsequent option incorporating the previous, until contact is avoided: rotate the foot about the lower leg (abduction/adduction), plantar flex the foot, rotate the leg outboard about the hip. Movement should be the minimum amount necessary. If it is not possible to avoid all foot contact, give priority to avoiding brake or clutch pedal contact. (S16.2.2.4 & S16.2.2.5 & S16.2.2.7)

- No contact
- Foot rotated about the leg (abduction/adduction)
- Foot rotated about the leg, and foot plantar flexed
- Foot rotated about the leg, foot plantar flexed, and the leg rotated about the hip.

X 33.3 Record foot position.

- Heel does not contact floor pan.
- Heel on floor pan and foot on toe board.
- Heel on floor pan and foot not on toe board.

X 34. Driver arm/hand positioning.

X 34.1 Place the dummy’s upper arms adjacent to the torso with the arm centerlines as close to a vertical longitudinal plane as possible. (S16.3.2.3.1)

X 34.2 Place the palms of the dummy in contact with the outer part of the steering wheel rim at its horizontal centerline with the thumbs over the steering wheel rim. (S16.3.2.3.2)

- 34.3 If it is not possible to position the thumbs inside the steering wheel rim at its horizontal centerline, then position them above and as close to the horizontal centerline of the steering wheel rim as possible. (S16.3.2.3.3)

X 34.4 Lightly tape the hands to the steering wheel rim so that if the hand of the test dummy is pushed upward by a force of not less than 9 N (2 lb) and not more than 22 N (5 lb), the tape releases the hand from the steering wheel rim. S16.3.2.3.4

X 35. Adjustable head restraints

- N/A, there is no head restraint adjustment

- 35.1 If the head restraint has an automatic adjustment, leave it where the system positions the restraint after the dummy is placed in the seat. (S16.3.4.1) Go to 36.

X 35.2 Adjust each head restraint vertically so that the mid-horizontal plane determined in Item 2 is aligned with the center of gravity (CG) of the dummy head. (S16.3.4.3)
X_35.3 If the above position is not attainable, move the vertical center of the head restraint to the closest detent below the center of the head CG. (S16.3.4.3)
 N/A midpoint position attained in previous step
 Headrest set at nearest detent below the head CG

35.4 If the head restraint has a fore and aft adjustment, place the restraint in the foremost position or until contact with the head is made, whichever occurs first. (S16.3.4.4)

X_36. Driver and passenger manual belt adjustment (for tests conducted with a belted dummy). (S16.3.5)
 N/A Dummies are unbelted for this test.

X_36.1 If an adjustable seat belt D-ring anchorage exists, place it in the manufacturer’s design position for a 5th percentile adult female. (S16.3.5.1) This information will be supplied by the COTR.
 Manufacturer’s specified position
 Actual Position

X_36.2 Place the Type 2 manual belt around the test dummy and fasten the latch. (S16.3.5.2)

X_36.3 Ensure that the dummy’s head remains as level as possible. (S16.3.5.3)

X_36.4 Remove all slack from the lap belt. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this operation four times. Apply a 9 N (2 lbf) to 18 N (4 lbf) tension load to the lap belt. If the belt system is equipped with a tension-relieving device, introduce the maximum amount of slack into the upper torso belt that is recommended by the manufacturer. If the belt system is not equipped with a tension-relieving device, allow the excess webbing in the shoulder belt to be retracted by the retractive force of the retractor. (S16.3.5.4)

I certify that I have read and performed each instruction.

Signature: ________________________ Date: 5/8/09
DATA SHEET 36 - APPENDIX G
DUMMY POSITIONING PROCEDURES
FOR 5th PERCENTILE FEMALE PASSENGER TEST DUMMY
CONFORMING TO SUBPART O OF PART 572

Test Vehicle: 2009 BMW 128i Coupe NHTSA No.: C90514
Test Program: FMVSS 208 Compliance Test Date: 5/8/09
Test Technician: Tim Bratz

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>_ X 32 to 40 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>X 5th female</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>X 5th female</td>
</tr>
</tbody>
</table>

(Check this item ONLY if it applies to this vehicle.)

The passenger seat adjustments are controlled by the adjustments made to the driver’s seat. Therefore, positioning of the passenger dummy is made simultaneously with the driver dummy. Adjustments made to the seat to position the driver will over ride any adjustments that would normally be made to position the passenger. (S16.2.10.3)

1. Seat Position

X 1.1 Position the seat’s adjustable lumbar supports so that the lumbar supports are in the lowest, retracted or deflated adjustment positions. (S16.2.10.1, S20.1.9.1, S20.4.1, S22.1.7.1)
X N/A – No lumbar adjustment

X 1.2 Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2, S20.1.9.2, S20.4.1, S22.1.7.1, S22.4.2.1, S22.4.3.1, S24.4.2.1, S26.2.3, S26.3.1)
X N/A – No additional support adjustment

X 1.3 Position an adjustable leg support system in its rearmost position. (8/27/04 interpretation to Toyota)
X N/A – No adjustable leg support system

X 1.4 **Mark a** point (seat cushion reference point) on the side of the seat cushion that is between 150 mm and 250 mm from the front edge of the seat cushion. (S16.3.1.12)

X 1.5 Draw a line (seat cushion reference line) through the seat cushion reference point. (S16.3.1.13)

X 1.6 Use only the controls that primarily move the seat in the fore-aft direction to move the seat cushion reference point to the rearmost position. (S16.2.10.3.1, S22.1.7.3)

X 1.7 If the seat cushion adjusts fore-aft, independent of the seat back, use only the controls that primarily move the seat cushion in the fore-aft direction to move the seat cushion reference point to the rearmost position. (S16.2.10.3.1, S20.1.9.3)
X N/A – No independent fore-aft seat cushion adjustment
X_1.8 Use any part of any control, other than the parts just used for fore-aft positioning, to
determine the range of angles of the seat cushion reference line and to set the seat
cushion reference line at the mid-angle. (S16.2.10.3.1)
 Maximum angle 8.0°
 Minimum angle 13.0°
 Mid-angle 10.5°

X_1.9 If the seat and/or seat cushion height is adjustable, use any part of any control other
than the parts which primarily move the seat or seat cushion fore-aft, to put the seat
cushion reference point in its lowest position with the seat cushion reference line angle
at the mid-angle found in 1.8. (S16.2.10.3.1)
 N/A – No seat height adjustment

X_1.10 Use only the controls that primarily move the seat in the fore-aft direction to verify the
seat is in the rearmost position.

X_1.11 Use only the controls that primarily move the seat in the fore-aft direction to mark the
fore-aft seat positions. Mark each position so that there is a visual indication when the
seat is at a particular position. For manual seats, move the seat forward one detent at a
time and mark each detent. For power seats, mark only the rearmost, middle, and
foremost positions. Label three of the positions with the following: F for foremost, M for
mid-position (if there is no mid-position, label the closest adjustment position to the rear
of the mid-point), and R for rearmost.

X_1.12 Use only the controls that primarily move the seat in the fore-aft direction to place the
seat in the rearmost position.

X_1.13 Use any part of any control, other than the parts which primarily move the seat or seat
cushion fore-aft, to find and visually mark the maximum, minimum, and middle height of
the seat cushion reference point with the seat cushion reference line at the mid-angle
determined in 1.8. (S20.1.9.4, S22.1.2, S22.1.7.4, S22.3.1, S22.4.3.1, S24.1.2, S24.3.1,
S24.4.3.1, S26.2.3, S26.3.1)
 N/A – No seat height adjustment. Go to 1.18

X_1.14 Use only the controls that primarily move the seat and/or seat cushion in the fore-aft
direction to place the seat in the mid-fore-aft position.

X_1.15 Use any part of any control, other than the parts which primarily move the seat or seat
cushion fore-aft, to find and visually mark the maximum, minimum, and middle height of
the seat cushion reference point with the seat cushion reference line at the mid-angle
determined in 1.8. (S20.1.9.4, S22.1.2, S22.1.7.4, S22.3.1, S24.1.2, S24.3.1)

X_1.16 Use only the controls that change the seat in the fore-aft direction to place the seat in
the foremost position. (S16.2.10.3.2)

X_1.17 Use any part of any control, other than the parts which primarily move the seat or seat
cushion fore-aft, to find and visually mark the maximum, minimum, and middle height of
the seat cushion reference point with the seat cushion reference line at the mid-angle
determined in 1.8. (S16.2.10.3.3, S20.1.9.4, S22.1.2, S22.1.7.4, S22.3.1, S24.1.2, S24.3.1)

X_1.18 Is the seat a bucket seat?
 X Yes, go to 1.19 and skip 1.20
 No, go to 1.20 and skip 1.19
X_1.19 Bucket seats:
Locate and mark for future reference the longitudinal centerline of the seat cushion. The intersection of the vertical longitudinal plane that passes through the SgRP and the seat cushion upper surface determines the longitudinal centerline of a bucket seat cushion. (S16.3.1.10 & S20.1.10)

__1.20 Bench seats:
Locate and mark the longitudinal centerline of the passenger seat cushion. The longitudinal centerline is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel. (S20.2.1.4, S22.2.1.3, S24.2.3, S20.4.4, S22.2.2.1(b), S22.2.2.3(b), S22.2.2.4(a), S22.2.2.5(a), S22.2.2.6(a), S22.2.2.7(a), S24.2.3(a))
Record the distance from the longitudinal centerline of the vehicle to the center of the steering wheel. _______
Record the distance from the longitudinal centerline of the vehicle to the longitudinal centerline of the seat cushion. (The vertical plane through this longitudinal centerline is Plane B for suppression.) _______

2. Head Restraint Position
__N/A Vehicle contains automatic head restraints.
__N/A, there is no head restraint adjustment Go to 3

X_2.1 Adjust the head restraint to its lowest position. (S16.2.10.2, S20.1.9.6 S20.4.1, S22.1.7.6, S22.4.2.1, S22.4.3.1, S24.4.3.1, S26.2.3, S26.3.1)

__2.2 All adjustments of the head restraint shall be used to position it full forward. For example, if it rotates, rotate it such that the head restraint extends as far forward as possible. Mark the foremost position. (S16.2.10.2 & S16.3.4.4 & S20.1.9.6, S20.4.1, S22.4.2.1, S22.4.3.1, S24.4.3.1, S26.2.3, S26.3.1)

X_2.3 Measure the vertical distance from the top most point of the head restraint to the bottom most point. Locate and mark a horizontal plane through the midpoint of this distance. (S16.3.4.3)
Vertical height of head restraint _180_ mm
Mid-point height _90_ mm

X_3. Place the SCRP in the full rearward, mid-height position, and mid-seat cushion angle. (S16.3.3.1.1)

X_4. Fully recline the seat back. (S16.3.3.1.2)
__ N/A seat back not adjustable.

X_5. Place the dummy in the seat with the legs at an angle of 120 degrees to the thighs. The calves should not be touching the seat cushion. (S16.3.3.1.2)

X_6. Position the dummy in the seat such that the midsagittal plane is coincident with the longitudinal seat cushion marking that was determined in item 1.19 or 1.20. (S16.3.3.1.3 and S16.3.3.1.4)

X_7. Hold down the dummy’s thighs and push rearward on the upper torso to maximize the pelvic angle. (S16.3.3.1.5)

X_8. Set the angle between the legs and the thighs to 120 degrees. (S16.3.3.1.6)
9. Set the transverse distance between the centers of the front of the knees at 160 to 170 mm. (6.3 to 6.7 inches). Center the knee separation with respect to the longitudinal seat cushion marking that was determined in item 1.19 or 1.20. (S16.3.3.1.6)
 Record Knee Separation: __164_____

10. Push rearward on the dummy’s knees until the pelvis contacts the seat back, or the backs of the calves contact the seat cushion, whichever occurs first. (S16.3.3.1.6)
 ___Pelvis contacted seat back.
 ___Calves contacted seat cushion.

11. Gently rock the upper torso ± 5 degrees (approximately 51 mm (2 inches)) side-to-side three times. (S16.3.3.1.7)

12. If needed, extend the legs until the feet do not contact the floor pan. The thighs should be resting on the seat cushion. (S16.3.3.1.8)

13. Use seat controls to line up the seat markings determined during the completion of item 1 to set the foremost fore-aft position, mid-height position and the seat cushion mid-angle. If the dummy contacts the interior move the seat rearward until a maximum clearance of 5 mm (0.2 inches) is achieved or the seat is in the closest detent position that does not cause dummy contact. (S16.3.3.1.8)
 ___Foremost, mid-height position and the seat cushion mid-angle reached
 ___Dummy contact. Clearance set at maximum of 5mm
 Measured Clearance________________
 ___Dummy Contact. Seat set at nearest detent position.
 Seat position ___ detent positions rearward of foremost
 (foremost is position zero)

14. If the seat back is adjustable, rotate the seat back forward while holding the thighs in place. Continue rotating the seat back forward until the transverse instrument platform of the dummy head is level ± 0.5 degrees. If head cannot be leveled using the seat back adjustment, or the seat back is not adjustable, use the lower neck bracket adjustment to level the head. If a level position cannot be achieved, adjust the head as closely as possible to the ± 0.5 degree range. (S16.3.3.1.9 and S16.3.3.1.10)
 (Check All That Apply)
 ___Seat back not adjustable
 ___Seat back not independent of driver side seat back
 ___Head Level Achieved. (Check all that apply)
 ___Head leveled using the adjustable seat back
 __Head leveled using the neck bracket.
 Head Angle ___0.2____ degrees
 ___Head Level NOT Achieved. (Check all that apply)
 ___Head adjusted using the adjustable seat back
 __Head adjusted using the neck bracket.
 Head Angle _______________ degrees

15. Verify the pelvis is not interfering with the seat bight. (S16.3.3.1.9)
 ___No interference
 ___Pelvis moved forward the minimum amount so that it is not caught in the seat bight.

16. Verify the dummy abdomen is properly installed. (S16.3.3.1.9)
 ___Abdomen still seated properly into dummy
 ___Abdomen was adjusted because it was not seated properly into dummy

17. Head Angle
 ___N/A, neither the pelvis nor the abdomen were adjusted.
X_17.1 Head still level (Go to 18)

__17.2 Head level adjusted
 __Head Level Achieved. (Check all that apply)
 __Head leveled using the adjustable seat back
 __Head leveled using the neck bracket.
 Head Angle ____________ degrees
 __Head Level NOT Achieved. (Check all that apply)
 __Head adjusted using the adjustable seat back
 __Head adjusted using the neck bracket.
 Head Angle ____________ degrees

X_18. Measure and set the pelvic angle using the pelvic angle gage TE-2504. The pelvic angle should be 20.0 degrees ± 2.5 degrees. If the pelvic angle cannot be set to the specified range because the head will not be level or because the dummy will have need major repositioning, adjust the pelvis as closely as possible to the angle range, but keep the head level.
 __Pelvic angle set to 20.0 degrees ± 2.5 degrees.
 __Pelvic angle of 20.0 degrees not achieved, the angular difference was minimized.
 __Record the pelvic angle. ___21.1 ______ degrees

X_19. Check the dummy for contact with the interior after completing adjustments.
 __No contact.
 __Dummy in contact with interior.
 __Seat moved aft ___ mm from the previous position.
 __Seat moved aft ___ detent positions from the previous position.

X_20. Verify the transverse instrument platform of the dummy head is level +/- 0.5 degrees. Use the lower neck bracket adjustment to level the head. If a level position cannot be achieved, minimize the angle. (S16.3.3.1.9, S16.3.3.1.10, and S16.3.3.1.11)
 __Head Level Achieved
 __Head Level NOT Achieved.

X_21. Check the dummy to see if additional interior clearance is obtained, allowing the seat to be moved forward. (S16.3.3.1.12)
 __N/A Bench Seat
 __N/A Seat already at full forward position.
 __Clearance unchanged. No adjustments required.
 __Additional clearance available
 __Seat moved Forward ___ mm from the previous position.
 __Seat moved Forward ___ detent positions from the previous position.
 __Seat moved Forward, Full Forward position reached.

X_22. Passenger foot positioning. (Indicate final position achieved) (S16.3.3.2)

__22.1 Place feet flat on the toe board; OR (S16.3.3.2.1)

__22.2 If the feet cannot be placed flat on the toe board, set the feet perpendicular to the lower leg, and rest the heel as far forward on the floor pan as possible; OR (S16.3.3.2.2)

__22.3 If the heels do not touch the floor pan, set the legs as perpendicular to the thighs as possible and set the feet parallel to the floor pan. (S16.3.3.2.2)
X_23. Passenger arm/hand positioning. (S16.3.3.3)

X_23.1 Place the dummy’s upper arms adjacent to the torso with the arm centerlines as close to a vertical longitudinal plane as possible. (S16.3.3.3.1)

X_23.2 Place the palms of the dummy in contact with the outer part of the thighs (S16.3.3.3.2)

X_23.3 Place the little fingers in contact with the seat cushion. (S16.3.3.3.3)

X_24. Adjustable head restraints (S16.3.4)

___N/A, there is no head restraint adjustment

___24.1 If the head restraint has an automatic adjustment, leave it where the system positions the restraint after the dummy is placed in the seat. (S16.3.4.1) Go to 25.

___24.2 Adjust each head restraint vertically so that the horizontal plane determined in Item 2 is aligned with the center of gravity (CG) of the dummy head. (S16.3.4.3)

___24.3 If the above position is not attainable, move the vertical center of the head restraint to the closest detent below the center of the head CG. (S16.3.4.3)

___N/A midpoint position attained in previous step

X_24.4 If the head restraint has a fore and aft adjustment, place the restraint in the foremost position or until contact with the head is made, whichever occurs first. (S16.3.4.4)

X_25. Manual belt adjustment (for tests conducted with a belted dummy) S16.3.5

X_25.1 If an adjustable seat belt D-ring anchorage exists, place it in the manufacturer’s design position for a 5th percentile adult female. This information will be supplied by the COTR. (S16.3.5.1)

Manufacturer’s specified position ________________________________

Actual Position__

___25.2 Place the Type 2 manual belt around the test dummy and fasten the latch. (S16.3.5.2)

___25.3 Ensure that the dummy’s head remains as level as possible. (S16.3.5.3)

___25.4 Remove all slack from the lap belt. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this operation four times. Apply a 9 N (2 lbf) to 18 N (4 lbf) tension load to the lap belt. If the belt system is equipped with a tension-relieving device, introduce the maximum amount of slack into the upper torso belt that is recommended by the manufacturer. If the belt system is not equipped with a tension-relieving device, allow the excess webbing in the shoulder belt to be retracted by the retractive force of the retractor. (S16.3.5.4)

I certify that I have read and performed each instruction.

Signature: ___________________________ Date: 5/8/09
DATA SHEET 37
DUMMY MEASUREMENTS

Test Vehicle: 2009 BMW 128i Coupe
Test Program: FMVSS 208 Compliance
Test Technician: Jordan Haynes

DUMMY MEASUREMENTS FOR FRONT SEAT OCCUPANTS

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Chest to Dash</td>
</tr>
<tr>
<td>CS</td>
<td>Chest to Steering Wheel Hub</td>
</tr>
<tr>
<td>HH</td>
<td>Head to Header</td>
</tr>
<tr>
<td>HW</td>
<td>Head to Windshield</td>
</tr>
<tr>
<td>HZ</td>
<td>Head to Roof</td>
</tr>
<tr>
<td>KDA</td>
<td>Knee to Dash Angle</td>
</tr>
<tr>
<td>KDL</td>
<td>Left Knee to Dash</td>
</tr>
<tr>
<td>KDR</td>
<td>Right Knee to Dash</td>
</tr>
<tr>
<td>NA</td>
<td>Nose to Rim Angle</td>
</tr>
<tr>
<td>NR</td>
<td>Nose to Rim</td>
</tr>
<tr>
<td>PA</td>
<td>Pelvic Angle</td>
</tr>
<tr>
<td>RA</td>
<td>Rim to Abdomen</td>
</tr>
<tr>
<td>SA</td>
<td>Seat Back Angle</td>
</tr>
<tr>
<td>SCA</td>
<td>Steering Column Angle</td>
</tr>
<tr>
<td>SH</td>
<td>Striker to H-Point</td>
</tr>
<tr>
<td>SK</td>
<td>Striker to Knee</td>
</tr>
<tr>
<td>ST</td>
<td>Striker to Head</td>
</tr>
<tr>
<td>SWA</td>
<td>Steering Wheel Angle</td>
</tr>
<tr>
<td>TA</td>
<td>Tibial Angle</td>
</tr>
<tr>
<td>WA</td>
<td>Windshield Angle</td>
</tr>
</tbody>
</table>

Test Vehicle: 2009 BMW 128i Coupe
Test Program: FMVSS 208 Compliance
Test Technician: Jordan Haynes

NHTSA No.: C90514
Test Date: 5/8/09
TEST DUMMY POSITION MEASUREMENTS

<table>
<thead>
<tr>
<th>Code</th>
<th>Measurement Description</th>
<th>Driver SN 124</th>
<th>Passenger SN 125</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Length (mm)</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>WA</td>
<td>Windshield Angle</td>
<td>27.8</td>
<td></td>
</tr>
<tr>
<td>SWA</td>
<td>Steering Wheel Angle</td>
<td>70.4</td>
<td></td>
</tr>
<tr>
<td>SCA</td>
<td>Steering Column Angle</td>
<td>19.6</td>
<td></td>
</tr>
<tr>
<td>SA</td>
<td>Seat Back Angle (On Headrest Post)</td>
<td>0.8</td>
<td>2.3</td>
</tr>
<tr>
<td>HZ</td>
<td>Head to Roof (Z)</td>
<td>176</td>
<td>201</td>
</tr>
<tr>
<td>HH</td>
<td>Head to Header</td>
<td>285</td>
<td>294</td>
</tr>
<tr>
<td>HW</td>
<td>Head to Windshield</td>
<td>587</td>
<td>608</td>
</tr>
<tr>
<td>HR</td>
<td>Head to Side Header (Y)</td>
<td>214</td>
<td>220</td>
</tr>
<tr>
<td>NR</td>
<td>Nose to Rim</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>Chest to Dash</td>
<td>439</td>
<td>386</td>
</tr>
<tr>
<td>CS</td>
<td>Chest to Steering Hub</td>
<td>212</td>
<td>14.5</td>
</tr>
<tr>
<td>RA</td>
<td>Rim to Abdomen</td>
<td>118</td>
<td>0.0</td>
</tr>
<tr>
<td>KDL</td>
<td>Left Knee to Dash</td>
<td>148</td>
<td>126</td>
</tr>
<tr>
<td>KDR</td>
<td>Right Knee to Dash</td>
<td>120</td>
<td>129</td>
</tr>
<tr>
<td>PA</td>
<td>Pelvic Angle</td>
<td>221</td>
<td>20.0</td>
</tr>
<tr>
<td>TA</td>
<td>Tibia Angle</td>
<td>48.4</td>
<td>51.5</td>
</tr>
<tr>
<td>KK</td>
<td>Knee to Knee (Y)</td>
<td>300</td>
<td>197</td>
</tr>
<tr>
<td>SK</td>
<td>Striker to Knee</td>
<td>828</td>
<td>101.3</td>
</tr>
<tr>
<td>ST</td>
<td>Striker to Head</td>
<td>531</td>
<td>47.1</td>
</tr>
<tr>
<td>SH</td>
<td>Striker to H-Point</td>
<td>544</td>
<td>113.3</td>
</tr>
<tr>
<td>SHY</td>
<td>Striker to H-Point (Y)</td>
<td>274</td>
<td>113.6</td>
</tr>
<tr>
<td>HS</td>
<td>Head to Side Window</td>
<td>321</td>
<td>317</td>
</tr>
<tr>
<td>HD</td>
<td>H-Point to Door (Y)</td>
<td>242</td>
<td>258</td>
</tr>
<tr>
<td>AD</td>
<td>Arm to Door (Y)</td>
<td>147</td>
<td>153</td>
</tr>
<tr>
<td>AA</td>
<td>Ankle to Ankle</td>
<td>286</td>
<td>203</td>
</tr>
</tbody>
</table>

Test Vehicle: 2009 BMW 128i Coupe
Test Program: FMVSS 208 Compliance
Test Technician: Tim Bratz
NHTSA No.: C90514
Test Date: 5/8/09
SEAT BELT POSITIONING DATA

DUMMY'S CENTERLINE

SHOULDER BELT PORTION

TBI

'D' RING

SHOULDER BELT PORTION

LAP BELT PORTION

PBU

PBL

MALE BLADE

BUCKLE ASSEMBLY

1/8" THICK ALUMINUM PLATE

FLOORPAN

EMERGENCY LOCKING RETRACTOR

OUTBOARD ANCHORAGE

INBOARD ANCHORAGE

REEL

FRONT VIEW OF DUMMY

SEAT BELT POSITIONING MEASUREMENTS

<table>
<thead>
<tr>
<th>Measurement Description</th>
<th>Units</th>
<th>Driver</th>
<th>Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBU - Top surface of reference to belt upper edge</td>
<td>mm</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>PBL - Top surface of reference to belt lower edge</td>
<td>mm</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
DATA SHEET 38

CRASH TEST

Test Vehicle: 2009 BMW 128i Coupe
NHTSA No.: C90514
Test Program: FMVSS 208 Compliance
Test Date: 5/8/09
Test Technician: Dustin Underwood

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>X 5th female</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>X 5th female</td>
</tr>
</tbody>
</table>

1. Vehicle underbody painted.
2. The speed measuring devices are in place and functioning.
3. The speed measuring devices are 1.0 m from the barrier (spec. 1.5m) and 30 cm from the barrier (spec. is 30 cm).
4. Convertible top is in the closed position.
5. Instrumentation and wires are placed so motion of dummies during impact is not affected.
6. Tires inflated to pressure on tire placard or if it does not have a tire placard because it is not a passenger car, then inflated to the tire pressure specified in the owner information.
 - 220 kpa front left tire
 - 220 kpa front right tire
 - 240 kpa rear left tire
 - 240 kpa rear right tire
7. Time zero contacts on barrier in place.
8. Pre test zero and shunt calibration adjustments performed and recorded.
9. Dummy temperature meets requirements of section 12.2 of the test procedure.
10. Vehicle hood closed and latched.
11. Transmission placed in neutral.
12. Parking brake off.
13. Are the heads still level?
 - Yes, go to 14
 - No, Adjust dummy so that head is at the angle recorded in the Appendix F or G data sheets and then continue.
15. Doors closed and latched but not locked.
16. Posttest zero and shunt calibration checks performed and recorded.
17. Actual test speed 39.8 kmph
18. Vehicle rebound from the barrier 229 cm
19. Describe whether the doors open after the test and what method is used to open the doors.
 - Left Front Door: Door remained closed and latched; Door opened without tools.
 - Right Front Door: Door remained closed and latched; Door opened without tools.
 - Left Rear Door: Door remained closed and latched; Door opened without tools.
 - Right Rear Door: Door remained closed and latched; Door opened without tools.
20. Describe the contact points of the dummy with the interior of the vehicle.
 - Driver Dummy: Head to Air Bag and Headrest; Chest to Air Bag; Knees to Knee Bolster.
 - Passenger Dummy: Head to Air Bag; Chest to Air Bag; Knees to Glove Box.

REMARKS:

Signature:
Date: 5/8/09

I certify that I have read and performed each instruction.
ACCIDENT INVESTIGATION MEASUREMENTS

Test Vehicle: 2009 BMW 128i Coupe
Test Program: FMVSS 208 Compliance
Test Technician: Jamie Aide
NHTSA No.: C90514
Test Date: 5/8/09

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>X 5th female</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>X 5th female</td>
</tr>
</tbody>
</table>

- **Vehicle Year/Make/Model/Body Style:** 2009 BMW 128i Coupe Passenger Car
- **VIN:** WBAUP73549VF06881
- **Wheelbase:** 2658 mm
- **Build Date:** 10/08
- **Vehicle Size Category:** 3
- **Test Weight:** 1646.5 kg
- **Front Overhang:** 749 mm
- **Overall Width:** 1708 mm
- **Overall Length Center:** 4314 mm

<table>
<thead>
<tr>
<th>Accelerometer Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
</tr>
<tr>
<td>Linearity:</td>
</tr>
<tr>
<td>Integration Algorithm:</td>
</tr>
<tr>
<td>Vehicle Impact Speed:</td>
</tr>
<tr>
<td>Time of Separation:</td>
</tr>
<tr>
<td>Velocity Change:</td>
</tr>
</tbody>
</table>
CRUSH PROFILE

Collision Deformation Classification: 12FDEW6
Midpoint of Damage: Vehicle Longitudinal Centerline
Damage Region Length (mm): 1370
Impact Mode: Frontal Barrier

<table>
<thead>
<tr>
<th>No.</th>
<th>Measurement Description</th>
<th>Units</th>
<th>Pre-Test</th>
<th>Post-Test</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Crush zone 1 at left side</td>
<td>Mm</td>
<td>4146</td>
<td>3900</td>
<td>246</td>
</tr>
<tr>
<td>C2</td>
<td>Crush zone 2 at left side</td>
<td>mm</td>
<td>4250</td>
<td>3935</td>
<td>315</td>
</tr>
<tr>
<td>C3</td>
<td>Crush zone 3 at left side</td>
<td>mm</td>
<td>4299</td>
<td>3964</td>
<td>335</td>
</tr>
<tr>
<td>C4</td>
<td>Crush zone 4 at right side</td>
<td>mm</td>
<td>4300</td>
<td>3962</td>
<td>338</td>
</tr>
<tr>
<td>C5</td>
<td>Crush zone 5 at right side</td>
<td>mm</td>
<td>4249</td>
<td>3918</td>
<td>331</td>
</tr>
<tr>
<td>C6</td>
<td>Crush zone 6 at right side</td>
<td>mm</td>
<td>4144</td>
<td>3983</td>
<td>161</td>
</tr>
</tbody>
</table>

REMARKS:

Signature:
Date: 5/8/09

I certify that I have read and performed each instruction.
DATA SHEET 41
WINDSHIELD MOUNTING (FMVSS 212)

Test Vehicle: 2009 BMW 128i Coupe
Test Program: FMVSS 208 Compliance
Test Technician: Jamie Aide

IMPACT ANGLE: Zero Degrees
BELTED DUMMIES (YES/NO): No
TEST SPEED: X 32 to 40 kmph
0 to 48 kmph
0 to 56 kmph
DRIVER DUMMY: X 5th female
50th male
PASSENGER DUMMY: X 5th female
50th male

1. Pre-Crash
 1.1 Describe from visual inspection how the windshield is mounted and describe any trim material.

Retained with glue
Rubber and plastic trim

1.2 Mark the longitudinal centerline of the windshield.
1.3 Measure pre-crash A, B, and C for the left side and record in the chart below.
1.4 Measure pre-crash C, D, and E for the right side and record in the chart below.
1.5 Measure from the edge of the retainer or molding to the edge of the windshield.
Dimension G (mm): 19 mm

2. Post Crash
 2.1 Can a single thickness of copier type paper (as small a piece as necessary) slide between the windshield and the vehicle body?

X No - Pass. Skip to the table of measurements, complete it by repeating the pre-crash measurements in the post crash column, and calculate the retention percentage, which will be 100%.

X Yes, go to 2.2

2.2 Visibly mark the beginning and end of the portions of the periphery where the paper slides between the windshield and the vehicle body.
2.3 Measure and record post-crash A, B, C, D, E, and F such that the measurements do not include any of the parts of the windshield where the paper slides between the windshield and the vehicle body.
2.4 Calculate and record the percent retention for the right and left side of the windshield.
2.5 Is total right side percent retention less than 75%?
 Yes, Fail
 No, Pass
2.6 Is total left side percent retention less than 75%?
 Yes, Fail
 No, Pass

Test Vehicle: 2009 BMW 128i Coupe
Test Program: FMVSS 208 Compliance
Test Technician: Jamie Aide

NHTSA No.: C90514
Test Date: 5/8/09
WINDSHIELD RETENTION MEASUREMENTS

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Pre-Crash (mm)</th>
<th>Post-Crash (mm)</th>
<th>Percent Retention (Post-Test ÷ Pre-Crash)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>548</td>
<td>548</td>
<td>100%</td>
</tr>
<tr>
<td>B</td>
<td>698</td>
<td>698</td>
<td>100%</td>
</tr>
<tr>
<td>C</td>
<td>726</td>
<td>726</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>1972</td>
<td>1972</td>
<td>100%</td>
</tr>
<tr>
<td>D</td>
<td>548</td>
<td>548</td>
<td>100%</td>
</tr>
<tr>
<td>E</td>
<td>698</td>
<td>698</td>
<td>100%</td>
</tr>
<tr>
<td>F</td>
<td>726</td>
<td>726</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>1972</td>
<td>1972</td>
<td>100%</td>
</tr>
</tbody>
</table>

Indicate area of mounting failure: NONE

FRONT VIEW OF WINDSHIELD

INDICATE WIDTH OF MOLDING

![Front View Diagram](image)

REMARKS:

Signature: [Signature Image] Date: 5/8/09

I certify that I have read and performed each instruction.
This standard specifies limits for the displacement of vehicle components into the windshield area during a frontal barrier impact test at any speed up to and including 48 kmph.

1. Place a 165 mm diameter rigid sphere, with a mass of 6.8 kg on the instrument panel so that it is simultaneously touching the instrument panel and the windshield. (571.219 S6.1(a))

2. Roll the sphere from one side of the windshield to the other while marking on the windshield where the sphere contacts the windshield. (571.219 S6.1(b))

3. From the outermost contactable points on the windshield draw a horizontal line to the edges of the windshield. (571.219 S6.1(b))

4. Draw a line on the inner surface of the windshield that is 13 mm below the line determined in items 2 and 3.

5. After the crash test, record any points where a part of the exterior of the vehicle has marked, penetrated, or broken the windshield.

Provide all dimensions necessary to reproduce the protected area.
WINDSHIELD DIMENSIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>mm</td>
<td>1096</td>
</tr>
<tr>
<td>B</td>
<td>mm</td>
<td>340</td>
</tr>
<tr>
<td>C</td>
<td>mm</td>
<td>1452</td>
</tr>
<tr>
<td>D</td>
<td>mm</td>
<td>698</td>
</tr>
<tr>
<td>E</td>
<td>mm</td>
<td>431</td>
</tr>
<tr>
<td>F</td>
<td>mm</td>
<td>488</td>
</tr>
</tbody>
</table>

AREA OF PROTECTED ZONE FAILURES:

B. Provide coordinates of the area that the protected zone was penetrated more than 0.25 inches by a vehicle component other than one which is normally in contact with the windshield.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Provide coordinates of the area beneath the protected zone template that the inner surface of the windshield was penetrated by a vehicle component.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature] Date: 5/8/09
DATA SHEET 43
FUEL SYSTEM INTEGRITY (FMVSS 301)

<table>
<thead>
<tr>
<th>Test Vehicle</th>
<th>2009 BMW 128i Coupe</th>
<th>NHTSA No.:</th>
<th>C90514</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program</td>
<td>FMVSS 208 Compliance</td>
<td>Test Date:</td>
<td>5/8/09</td>
</tr>
<tr>
<td>Test Technician</td>
<td>Dustin Underwood</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TYPE OF IMPACT:

| 25 mph Unbelted Flat Frontal |

Stoddard Solvent Spillage Measurements

<table>
<thead>
<tr>
<th>A. From impact until vehicle motion ceases:</th>
<th>0.0 grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Maximum Allowable = 28 grams)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. For the 5 minute period after motion ceases:</th>
<th>0.0 grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Maximum Allowable = 142 grams)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C. For the following 25 minutes:</th>
<th>0.0 grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Maximum Allowable = 28 grams/minute)</td>
<td></td>
</tr>
</tbody>
</table>

| D. Spillage: | NONE |

REMARKS:

NO SPILLAGE
1. The specified fixture rollover rate for each 90° of rotation is 60 to 180 seconds.
2. The position hold time at each position is 300 seconds (minimum).
3. Details of Stoddard Solvent spillage locations: None
<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Data Plot Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Driver Head X Acceleration vs. Time</td>
<td>A-1</td>
</tr>
<tr>
<td>2</td>
<td>Driver Head Y Acceleration vs. Time</td>
<td>A-1</td>
</tr>
<tr>
<td>3</td>
<td>Driver Head Z Acceleration vs. Time</td>
<td>A-1</td>
</tr>
<tr>
<td>4</td>
<td>Driver Head Resultant Acceleration vs. Time</td>
<td>A-1</td>
</tr>
<tr>
<td>5</td>
<td>Driver Head X Velocity vs. Time</td>
<td>A-2</td>
</tr>
<tr>
<td>6</td>
<td>Driver Head Y Velocity vs. Time</td>
<td>A-2</td>
</tr>
<tr>
<td>7</td>
<td>Driver Head Z Velocity vs. Time</td>
<td>A-2</td>
</tr>
<tr>
<td>8</td>
<td>Driver Neck Force X vs. Time</td>
<td>A-3</td>
</tr>
<tr>
<td>9</td>
<td>Driver Neck Force Y vs. Time</td>
<td>A-3</td>
</tr>
<tr>
<td>10</td>
<td>Driver Neck Force Z vs. Time</td>
<td>A-3</td>
</tr>
<tr>
<td>11</td>
<td>Driver Neck Force Resultant vs. Time</td>
<td>A-3</td>
</tr>
<tr>
<td>12</td>
<td>Driver Neck Moment X vs. Time</td>
<td>A-4</td>
</tr>
<tr>
<td>13</td>
<td>Driver Neck Moment Y vs. Time</td>
<td>A-4</td>
</tr>
<tr>
<td>14</td>
<td>Driver Neck Moment Z vs. Time</td>
<td>A-4</td>
</tr>
<tr>
<td>15</td>
<td>Driver Neck Moment Resultant vs. Time</td>
<td>A-4</td>
</tr>
<tr>
<td>16</td>
<td>Driver Chest X Acceleration vs. Time</td>
<td>A-5</td>
</tr>
<tr>
<td>17</td>
<td>Driver Chest Y Acceleration vs. Time</td>
<td>A-5</td>
</tr>
<tr>
<td>18</td>
<td>Driver Chest Z Acceleration vs. Time</td>
<td>A-5</td>
</tr>
<tr>
<td>19</td>
<td>Driver Chest Resultant Acceleration vs. Time</td>
<td>A-5</td>
</tr>
<tr>
<td>20</td>
<td>Driver Chest X Velocity vs. Time</td>
<td>A-6</td>
</tr>
<tr>
<td>21</td>
<td>Driver Chest Y Velocity vs. Time</td>
<td>A-6</td>
</tr>
<tr>
<td>22</td>
<td>Driver Chest Z Velocity vs. Time</td>
<td>A-6</td>
</tr>
<tr>
<td>23</td>
<td>Driver Chest Displacement vs. Time</td>
<td>A-6</td>
</tr>
<tr>
<td>24</td>
<td>Driver Left Femur Force vs. Time</td>
<td>A-7</td>
</tr>
<tr>
<td>25</td>
<td>Driver Right Femur Force vs. Time</td>
<td>A-7</td>
</tr>
<tr>
<td>26</td>
<td>Passenger Head X Acceleration vs. Time</td>
<td>A-8</td>
</tr>
<tr>
<td>27</td>
<td>Passenger Head Y Acceleration vs. Time</td>
<td>A-8</td>
</tr>
<tr>
<td>Figure No. 28</td>
<td>Passenger Head Z Acceleration vs. Time</td>
<td>A-8</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Figure No. 29</td>
<td>Passenger Head Resultant Acceleration vs. Time</td>
<td>A-8</td>
</tr>
<tr>
<td>Figure No. 30</td>
<td>Passenger Head X Velocity vs. Time</td>
<td>A-9</td>
</tr>
<tr>
<td>Figure No. 31</td>
<td>Passenger Head Y Velocity vs. Time</td>
<td>A-9</td>
</tr>
<tr>
<td>Figure No. 32</td>
<td>Passenger Head Z Velocity vs. Time</td>
<td>A-9</td>
</tr>
<tr>
<td>Figure No. 33</td>
<td>Passenger Neck Force X vs. Time</td>
<td>A-10</td>
</tr>
<tr>
<td>Figure No. 34</td>
<td>Passenger Neck Force Y vs. Time</td>
<td>A-10</td>
</tr>
<tr>
<td>Figure No. 35</td>
<td>Passenger Neck Force Z vs. Time</td>
<td>A-10</td>
</tr>
<tr>
<td>Figure No. 36</td>
<td>Passenger Neck Force Resultant vs. Time</td>
<td>A-10</td>
</tr>
<tr>
<td>Figure No. 37</td>
<td>Passenger Neck Moment X vs. Time</td>
<td>A-11</td>
</tr>
<tr>
<td>Figure No. 38</td>
<td>Passenger Neck Moment Y vs. Time</td>
<td>A-11</td>
</tr>
<tr>
<td>Figure No. 39</td>
<td>Passenger Neck Moment Z vs. Time</td>
<td>A-11</td>
</tr>
<tr>
<td>Figure No. 40</td>
<td>Passenger Neck Moment Resultant vs. Time</td>
<td>A-11</td>
</tr>
<tr>
<td>Figure No. 41</td>
<td>Passenger Chest X Acceleration vs. Time</td>
<td>A-12</td>
</tr>
<tr>
<td>Figure No. 42</td>
<td>Passenger Chest Y Acceleration vs. Time</td>
<td>A-12</td>
</tr>
<tr>
<td>Figure No. 43</td>
<td>Passenger Chest Z Acceleration vs. Time</td>
<td>A-12</td>
</tr>
<tr>
<td>Figure No. 44</td>
<td>Passenger Chest Resultant Acceleration vs. Time</td>
<td>A-12</td>
</tr>
<tr>
<td>Figure No. 45</td>
<td>Passenger Chest X Velocity vs. Time</td>
<td>A-13</td>
</tr>
<tr>
<td>Figure No. 46</td>
<td>Passenger Chest Y Velocity vs. Time</td>
<td>A-13</td>
</tr>
<tr>
<td>Figure No. 47</td>
<td>Passenger Chest Z Velocity vs. Time</td>
<td>A-13</td>
</tr>
<tr>
<td>Figure No. 48</td>
<td>Passenger Chest Displacement vs. Time</td>
<td>A-13</td>
</tr>
<tr>
<td>Figure No. 49</td>
<td>Passenger Left Femur Force vs. Time</td>
<td>A-14</td>
</tr>
<tr>
<td>Figure No. 50</td>
<td>Passenger Right Femur Force vs. Time</td>
<td>A-14</td>
</tr>
<tr>
<td>Figure No. 51</td>
<td>Driver Nij (N_{TF}) vs. Time</td>
<td>A-15</td>
</tr>
<tr>
<td>Figure No. 52</td>
<td>Driver Nij (N_{TE}) vs. Time</td>
<td>A-15</td>
</tr>
<tr>
<td>Figure No. 53</td>
<td>Driver Nij (N_{CF}) vs. Time</td>
<td>A-15</td>
</tr>
<tr>
<td>Figure No. 54</td>
<td>Driver Nij (N_{CE}) vs. Time</td>
<td>A-15</td>
</tr>
<tr>
<td>Figure No. 55</td>
<td>Passenger Nij (N_{TF}) vs. Time</td>
<td>A-16</td>
</tr>
<tr>
<td>Figure No. 56</td>
<td>Passenger Nij (N_{TE}) vs. Time</td>
<td>A-16</td>
</tr>
<tr>
<td>Figure No. 57</td>
<td>Passenger Nij (N_{CF}) vs. Time</td>
<td>A-16</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>58</td>
<td>Passenger Nij (N_{CE}) vs. Time</td>
<td>A-16</td>
</tr>
<tr>
<td>59</td>
<td>Driver Occipital Condyle Moment vs. Time</td>
<td>A-17</td>
</tr>
<tr>
<td>60</td>
<td>Passenger Occipital Condyle Moment vs. Time</td>
<td>A-17</td>
</tr>
<tr>
<td>61</td>
<td>Left Rear Seat Crossmember X Acceleration vs. Time</td>
<td>A-18</td>
</tr>
<tr>
<td>62</td>
<td>Left Rear Seat Crossmember X Velocity vs. Time</td>
<td>A-18</td>
</tr>
<tr>
<td>63</td>
<td>Right Rear Seat Crossmember X Acceleration vs. Time</td>
<td>A-18</td>
</tr>
<tr>
<td>64</td>
<td>Right Rear Seat Crossmember X Velocity vs. Time</td>
<td>A-18</td>
</tr>
<tr>
<td>65</td>
<td>Top of Engine X Acceleration vs. Time</td>
<td>A-19</td>
</tr>
<tr>
<td>66</td>
<td>Top of Engine X Velocity vs. Time</td>
<td>A-19</td>
</tr>
<tr>
<td>67</td>
<td>Bottom of Engine X Acceleration vs. Time</td>
<td>A-19</td>
</tr>
<tr>
<td>68</td>
<td>Bottom of Engine X Velocity vs. Time</td>
<td>A-19</td>
</tr>
<tr>
<td>69</td>
<td>Left Brake Caliper X Acceleration vs. Time</td>
<td>A-20</td>
</tr>
<tr>
<td>70</td>
<td>Left Brake Caliper X Velocity vs. Time</td>
<td>A-20</td>
</tr>
<tr>
<td>71</td>
<td>Right Brake Caliper X Acceleration vs. Time</td>
<td>A-20</td>
</tr>
<tr>
<td>72</td>
<td>Right Brake Caliper X Velocity vs. Time</td>
<td>A-20</td>
</tr>
<tr>
<td>73</td>
<td>Instrument Panel X Acceleration vs. Time</td>
<td>A-21</td>
</tr>
<tr>
<td>74</td>
<td>Instrument Panel X Velocity vs. Time</td>
<td>A-21</td>
</tr>
<tr>
<td>75</td>
<td>Trunk Z Acceleration vs. Time</td>
<td>A-21</td>
</tr>
<tr>
<td>76</td>
<td>Trunk Z Velocity vs. Time</td>
<td>A-21</td>
</tr>
</tbody>
</table>
25 MPH FRONTAL UNBELTED 5THS
2009 BMW 128i (C90514)
Test Date: 05/08/2009
Speed: 24.7 mph (39.8 km/h)

Max: 11.0 G's
Tmax: 300.0 ms
Min: -35.7 G's
Tmin: 48.9 ms
CFC 1000

Max: 5.6 G's
Tmax: 34.6 ms
Min: -8.5 G's
Tmin: 38.2 ms
CFC 1000

Max: 6.4 G's
Tmax: 113.0 ms
Min: -10.5 G's
Tmin: 59.2 ms
CFC 1000

Max: 36.1 G's
Tmax: 48.9 ms
Min: 0.0 G's
Tmin: 1.3 ms
CFC 1000
25 MPH FRONTAL UNBELTED 5THS
2009 BMW 128i (C90514)

Test Date: 05/08/2009
Speed: 24.7 mph (39.8 km/h)

DRIVER HEAD X Velocity (kph) vs TIME (ms)
- Max: 39.8 kph
- Tmax: 0.0 ms
- Min: -8.2 kph
- Tmin: 245.7 ms
- CFC 180

DRIVER HEAD Y Velocity (kph) vs TIME (ms)
- Max: 0.0 kph
- Tmax: 0.0 ms
- Min: -11.8 kph
- Tmin: 145.9 ms
- CFC 180

DRIVER HEAD Z Velocity (kph) vs TIME (ms)
- Max: 0.0 kph
- Tmax: 0.0 ms
- Min: -14.1 kph
- Tmin: 101.9 ms
- CFC 180
25 MPH FRONTAL UNBELTED 5THS
2009 BMW 128i (C90514)

Test Date: 05/08/2009
Speed: 24.7 mph (39.8 km/h)

Max: 481.6 N
Tmax: 84.7 ms
Min: -143.3 N
Tmin: 122.1 ms
CFC 1000

Max: 112.9 N
Tmax: 74.6 ms
Min: -113.1 N
Tmin: 119.0 ms
CFC 1000

Max: 1077.2 N
Tmax: 53.4 ms
Min: -89.9 N
Tmin: 87.3 ms
CFC 1000

Max: 1082.4 N
Tmax: 51.5 ms
Min: 0.7 N
Tmin: 0.0 ms
CFC 1000
25 MPH FRONTAL UNBELTED 5THS
2009 BMW 128i (C90514)
Test Date: 05/08/2009
Speed: 24.7 mph (39.8 km/h)

Max: 2.6 G's
Tmax: 123.9 ms
Min: -40.6 G's
Tmin: 76.4 ms
CFC 180

Max: 3.4 G's
Tmax: 89.2 ms
Min: -6.2 G's
Tmin: 58.3 ms
CFC 180

Max: 2.1 G's
Tmax: 148.8 ms
Min: -12.1 G's
Tmin: 63.4 ms
CFC 180

Max: 40.7 G's
Tmax: 76.4 ms
Min: 0.0 G's
Tmin: 0.0 ms
CFC 180

DRIVER CHEST X (G's) vs TIME (ms)
DRIVER CHEST Y (G's) vs TIME (ms)
DRIVER CHEST Z (G's) vs TIME (ms)
DRIVER CHEST Resultant (G's) vs TIME (ms)
25 MPH FRONTAL UNBELTED 5THS
2009 BMW 128i (C90514)

Test Date: 05/08/2009
Speed: 24.7 mph (39.8 km/h)

Driver Left Femur (N) vs Time (ms)
- Max: 329.7 N
- Tmax: 42.9 ms
- Min: -3562.3 N
- Tmin: 63.7 ms

Driver Right Femur (N) vs Time (ms)
- Max: 401.9 N
- Tmax: 217.5 ms
- Min: -4210.8 N
- Tmin: 71.5 ms
25 MPH FRONTAL UNBELTED 5THS
2009 BMW 128i (C90514)

Test Date: 05/08/2009
Speed: 24.7 mph (39.8 km/h)

PASSENGER HEAD X (G's) vs TIME (ms)
Max: 8.5 G's
Tmax: 105.8 ms
Min: -29.6 G's
Tmin: 54.4 ms
CFC 1000

PASSENGER HEAD Y (G's) vs TIME (ms)
Max: 8.4 G's
Tmax: 106.1 ms
Min: -12.7 G's
Tmin: 78.3 ms
CFC 1000

PASSENGER HEAD Z (G's) vs TIME (ms)
Max: 11.6 G's
Tmax: 77.3 ms
Min: -19.1 G's
Tmin: 104.8 ms
CFC 1000

PASSENGER HEAD Resultant (G's) vs TIME (ms)
Max: 30.0 G's
Tmax: 39.2 ms
Min: 0.0 G's
Tmin: 0.0 ms
CFC 1000
25 MPH FRONTAL UNBELTED 5THS
2009 BMW 128i (C90514)

Speed: 24.7 mph (39.8 km/h)

Test Date: 05/08/2009

- PASSENGER HEAD X Velocity (kph) vs TIME (ms)
 - Max: 40.3 kph
 - Tmax: 35.8 ms
 - Min: -5.4 kph
 - Tmin: 285.1 ms
 - CFC 180

- PASSENGER HEAD Y Velocity (kph) vs TIME (ms)
 - Max: 0.1 kph
 - Tmax: 32.2 ms
 - Min: -9.1 kph
 - Tmin: 95.1 ms
 - CFC 180

- PASSENGER HEAD Z Velocity (kph) vs TIME (ms)
 - Max: 5.4 kph
 - Tmax: 300.0 ms
 - Min: -11.8 kph
 - Tmin: 127.7 ms
 - CFC 180
25 MPH FRONTAL UNBELTED 5THS
2009 BMW 128i (C90514)

Test Date: 05/08/2009
Speed: 24.7 mph (39.8 km/h)

Max: 2.6 G's
Tmax: 200.0 ms
Min: -30.1 G's
Tmin: 72.0 ms
CFC 180

Max: 2.4 G's
Tmax: 60.2 ms
Min: -9.1 G's
Tmin: 77.7 ms
CFC 180

Max: 12.0 G's
Tmax: 76.2 ms
Min: -8.9 G's
Tmin: 39.8 ms
CFC 180

Max: 30.8 G's
Tmax: 76.4 ms
Min: 0.0 G's
Tmin: 0.0 ms
CFC 180

A-12
25 MPH FRONTAL UNBELTED 5THS
2009 BMW 128i (C90514)

Test Date: 05/08/2009
Speed: 24.7 mph (39.8 km/h)

Max: 39.8 kph
Tmax: 0.0 ms
Min: -9.2 kph
Tmin: 159.9 ms
CFC 180

Max: 0.5 kph
Tmax: 62.6 ms
Min: -7.2 kph
Tmin: 185.8 ms
CFC 180

Max: 7.1 kph
Tmax: 300.0 ms
Min: -6.3 kph
Tmin: 71.7 ms
CFC 180

Max: 0.5 mm
Tmax: 32.5 ms
Min: -7.9 mm
Tmin: 59.2 ms
CFC 600
25 MPH FRONTAL UNBELTED 5THS
2009 BMW 128i (C90514)
Test Date: 05/08/2009
Speed: 24.7 mph (39.8 km/h)

Max: 524.9 N
Tmax: 49.6 ms
Min: -4365.7 N
Tmin: 67.7 ms
CFC 600

Max: 570.3 N
Tmax: 47.3 ms
Min: -3760.6 N
Tmin: 64.7 ms
CFC 600
25 MPH FRONTAL UNBELTED 5THS
2009 BMW 128i (C90514)

Test Date: 05/08/2009
Speed: 24.7 mph (39.8 km/h)

Max: 0.1
Tmax: 139.2 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600

Max: 0.6
Tmax: 48.9 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600

Max: 0.1
Tmax: 151.7 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600

Max: 0.0
Tmax: 92.4 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600
25 MPH FRONTAL UNBELTED 5THS
2009 BMW 128i (C90514)

Test Date: 05/08/2009
Speed: 24.7 mph (39.8 km/h)

Max: 18.5 Nm
Tmax: 147.0 ms
Min: -22.3 Nm
Tmin: 48.8 ms
CFC 600

Max: 42.8 Nm
Tmax: 68.7 ms
Min: -25.3 Nm
Tmin: 100.1 ms
CFC 600
LEFT REAR SEAT CROSSMEMBER X (G's) vs TIME (ms)

Max: 0.9 G's
Tmax: 0.0 ms
Min: -39.8 G's
Tmin: 52.1 ms
CFC 60

No valid data collected after 85 msec.

LEFT REAR SEAT CROSSMEMBER X Velocity (kph) vs TIME (ms)

Max: 39.8 kph
Tmax: 2.8 ms
Min: -2.8 kph
Tmin: 85.0 ms
CFC 180

No valid data collected after 85 msec.

RIGHT REAR SEAT CROSSMEMBER X (G's) vs TIME (ms)

Max: 1.4 G's
Tmax: 94.2 ms
Min: -36.7 G's
Tmin: 56.0 ms
CFC 60

RIGHT REAR SEAT CROSSMEMBER X Velocity (kph) vs TIME (ms)

Max: 39.8 kph
Tmax: 3.2 ms
Min: -6.0 kph
Tmin: 85.6 ms
CFC 180
25 MPH FRONTAL UNBELTED 5THS
2009 BMW 128i (C90514)

Test Date: 05/08/2009
Speed: 24.7 mph (39.8 km/h)

LEFT BRAKE CALIPER X (G's) vs TIME (ms)
- Max: 8.8 G's
- Tmax: 94.3 ms
- Min: -45.9 G's
- Tmin: 54.2 ms
- CFC 60

LEFT BRAKE CALIPER X Velocity (kph) vs TIME (ms)
- Max: 39.8 kph
- Tmax: 0.0 ms
- Min: -6.5 kph
- Tmin: 146.4 ms
- CFC 180

RIGHT BRAKE CALIPER X (G's) vs TIME (ms)
- Max: 10.4 G's
- Tmax: 74.1 ms
- Min: -43.6 G's
- Tmin: 53.7 ms
- CFC 60

RIGHT BRAKE CALIPER X Velocity (kph) vs TIME (ms)
- Max: 39.8 kph
- Tmax: 0.0 ms
- Min: -6.6 kph
- Tmin: 118.2 ms
- CFC 180

A-20
APPENDIX B
LOW RISK TEST DATA

TABLE OF DATA PLOTS

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5th Fem. P1 Driver Head X Acceleration vs. Time</td>
<td>B-1</td>
</tr>
<tr>
<td>2</td>
<td>5th Fem. P1 Driver Head Y Acceleration vs. Time</td>
<td>B-1</td>
</tr>
<tr>
<td>3</td>
<td>5th Fem. P1 Driver Head Z Acceleration vs. Time</td>
<td>B-1</td>
</tr>
<tr>
<td>4</td>
<td>5th Fem. P1 Driver Head Resultant Acceleration vs. Time</td>
<td>B-1</td>
</tr>
<tr>
<td>5</td>
<td>5th Fem. P1 Driver Head X Velocity vs. Time</td>
<td>B-2</td>
</tr>
<tr>
<td>6</td>
<td>5th Fem. P1 Driver Head Y Velocity vs. Time</td>
<td>B-2</td>
</tr>
<tr>
<td>7</td>
<td>5th Fem. P1 Driver Head Z Velocity vs. Time</td>
<td>B-2</td>
</tr>
<tr>
<td>8</td>
<td>5th Fem. P1 Driver Neck Force X vs. Time</td>
<td>B-3</td>
</tr>
<tr>
<td>9</td>
<td>5th Fem. P1 Driver Neck Force Y vs. Time</td>
<td>B-3</td>
</tr>
<tr>
<td>10</td>
<td>5th Fem. P1 Driver Neck Force Z vs. Time</td>
<td>B-3</td>
</tr>
<tr>
<td>11</td>
<td>5th Fem. P1 Driver Neck Force Resultant vs. Time</td>
<td>B-3</td>
</tr>
<tr>
<td>12</td>
<td>5th Fem. P1 Driver Neck Moment X vs. Time</td>
<td>B-4</td>
</tr>
<tr>
<td>13</td>
<td>5th Fem. P1 Driver Neck Moment Y vs. Time</td>
<td>B-4</td>
</tr>
<tr>
<td>14</td>
<td>5th Fem. P1 Driver Neck Moment Z vs. Time</td>
<td>B-4</td>
</tr>
<tr>
<td>15</td>
<td>5th Fem. P1 Driver Occipital Condyle Moment vs. Time</td>
<td>B-4</td>
</tr>
<tr>
<td>16</td>
<td>5th Fem. P1 Driver Chest X Acceleration vs. Time</td>
<td>B-5</td>
</tr>
<tr>
<td>17</td>
<td>5th Fem. P1 Driver Chest Y Acceleration vs. Time</td>
<td>B-5</td>
</tr>
<tr>
<td>18</td>
<td>5th Fem. P1 Driver Chest Z Acceleration vs. Time</td>
<td>B-5</td>
</tr>
<tr>
<td>19</td>
<td>5th Fem. P1 Driver Chest Resultant Acceleration vs. Time</td>
<td>B-5</td>
</tr>
<tr>
<td>20</td>
<td>5th Fem. P1 Driver Chest X Velocity vs. Time</td>
<td>B-6</td>
</tr>
<tr>
<td>21</td>
<td>5th Fem. P1 Driver Chest Y Velocity vs. Time</td>
<td>B-6</td>
</tr>
<tr>
<td>22</td>
<td>5th Fem. P1 Driver Chest Z Velocity vs. Time</td>
<td>B-6</td>
</tr>
<tr>
<td>23</td>
<td>5th Fem. P1 Driver Chest Displacement vs. Time</td>
<td>B-6</td>
</tr>
<tr>
<td>24</td>
<td>5th Fem. P1 Driver Left Femur Force vs. Time</td>
<td>B-7</td>
</tr>
<tr>
<td>25</td>
<td>5th Fem. P1 Driver Right Femur Force vs. Time</td>
<td>B-7</td>
</tr>
<tr>
<td>26</td>
<td>Fire Voltage #1 vs. Time</td>
<td>B-8</td>
</tr>
<tr>
<td>27</td>
<td>Fire Current #1 vs. Time</td>
<td>B-8</td>
</tr>
</tbody>
</table>
Figure No. 28. Fire Voltage #2 vs. Time
Figure No. 29. Fire Current #2 vs. Time
Figure No. 30. 5th Fem. P1 Driver Nij (N_TF) vs. Time
Figure No. 31. 5th Fem. P1 Driver Nij (N_TE) vs. Time
Figure No. 32. 5th Fem. P1 Driver Nij (N_CF) vs. Time
Figure No. 33. 5th Fem. P1 Driver Nij (N_CE) vs. Time
Figure No. 34. 5th Fem. P2 Driver Head X Acceleration vs. Time
Figure No. 35. 5th Fem. P2 Driver Head Y Acceleration vs. Time
Figure No. 36. 5th Fem. P2 Driver Head Z Acceleration vs. Time
Figure No. 37. 5th Fem. P2 Driver Head Resultant Acceleration vs. Time
Figure No. 38. 5th Fem. P2 Driver Head X Velocity vs. Time
Figure No. 39. 5th Fem. P2 Driver Head Y Velocity vs. Time
Figure No. 40. 5th Fem. P2 Driver Head Z Velocity vs. Time
Figure No. 41. 5th Fem. P2 Driver Neck Force X vs. Time
Figure No. 42. 5th Fem. P2 Driver Neck Force Y vs. Time
Figure No. 43. 5th Fem. P2 Driver Neck Force Z vs. Time
Figure No. 44. 5th Fem. P2 Driver Neck Force Resultant vs. Time
Figure No. 45. 5th Fem. P2 Driver Neck Moment X vs. Time
Figure No. 46. 5th Fem. P2 Driver Neck Moment Y vs. Time
Figure No. 47. 5th Fem. P2 Driver Neck Moment Z vs. Time
Figure No. 48. 5th Fem. P2 Driver Occipital Condyle Moment vs. Time
Figure No. 49. 5th Fem. P2 Driver Chest X Acceleration vs. Time
Figure No. 50. 5th Fem. P2 Driver Chest Y Acceleration vs. Time
Figure No. 51. 5th Fem. P2 Driver Chest Z Acceleration vs. Time
Figure No. 52. 5th Fem. P2 Driver Chest Resultant Acceleration vs. Time
Figure No. 53. 5th Fem. P2 Driver Chest X Velocity vs. Time
Figure No. 54. 5th Fem. P2 Driver Chest Y Velocity vs. Time
Figure No. 55. 5th Fem. P2 Driver Chest Z Velocity vs. Time
Figure No. 56. 5th Fem. P2 Driver Chest Displacement vs. Time
Figure No. 57. 5th Fem. P2 Driver Left Femur Force vs. Time
Figure No. 58. 5th Fem. P2 Driver Right Femur Force vs. Time B-16
Figure No. 59. Fire Voltage #1 vs. Time B-17
Figure No. 60. Fire Current #1 vs. Time B-17
Figure No. 61. Fire Voltage #2 vs. Time B-17
Figure No. 62. Fire Current #2 vs. Time B-17
Figure No. 63. 5th Fem. P2 Driver Nij (N_{TF}) vs. Time B-18
Figure No. 64. 5th Fem. P2 Driver Nij (N_{TE}) vs. Time B-18
Figure No. 65. 5th Fem. P2 Driver Nij (N_{CF}) vs. Time B-18
Figure No. 66. 5th Fem. P2 Driver Nij (N_{CE}) vs. Time B-18
Figure No. 67. 3YO P1 Passenger Head X Acceleration vs. Time B-19
Figure No. 68. 3YO P1 Passenger Head Y Acceleration vs. Time B-19
Figure No. 69. 3YO P1 Passenger Head Z Acceleration vs. Time B-19
Figure No. 70. 3YO P1 Passenger Head Resultant Acceleration vs. Time B-19
Figure No. 71. 3YO P1 Passenger Head X Velocity vs. Time B-20
Figure No. 72. 3YO P1 Passenger Head Y Velocity vs. Time B-20
Figure No. 73. 3YO P1 Passenger Head Z Velocity vs. Time B-20
Figure No. 74. 3YO P1 Passenger Neck Force X vs. Time B-21
Figure No. 75. 3YO P1 Passenger Neck Force Y vs. Time B-21
Figure No. 76. 3YO P1 Passenger Neck Force Z vs. Time B-21
Figure No. 77. 3YO P1 Passenger Neck Force Resultant vs. Time B-21
Figure No. 78. 3YO P1 Passenger Neck Moment X vs. Time B-22
Figure No. 79. 3YO P1 Passenger Neck Moment Y vs. Time B-22
Figure No. 80. 3YO P1 Passenger Neck Moment Z vs. Time B-22
Figure No. 81. 3YO P1 Passenger Occipital Condyle Moment vs. Time B-22
Figure No. 82. 3YO P1 Passenger Chest X Acceleration vs. Time B-23
Figure No. 83. 3YO P1 Passenger Chest Y Acceleration vs. Time B-23
Figure No. 84. 3YO P1 Passenger Chest Z Acceleration vs. Time B-23
Figure No. 85. 3YO P1 Passenger Chest Resultant Acceleration vs. Time B-23
Figure No. 86. 3YO P1 Passenger Chest X Velocity vs. Time B-24
Figure No. 87. 3YO P1 Passenger Chest Y Velocity vs. Time B-24
<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>3YO P1 Passenger Chest Z Velocity vs. Time</td>
<td>B-24</td>
</tr>
<tr>
<td>89</td>
<td>3YO P1 Passenger Chest Displacement vs. Time</td>
<td>B-24</td>
</tr>
<tr>
<td>90</td>
<td>Fire Voltage #1 vs. Time</td>
<td>B-25</td>
</tr>
<tr>
<td>91</td>
<td>Fire Current #1 vs. Time</td>
<td>B-25</td>
</tr>
<tr>
<td>92</td>
<td>Fire Voltage #2 vs. Time</td>
<td>B-25</td>
</tr>
<tr>
<td>93</td>
<td>Fire Current #2 vs. Time</td>
<td>B-25</td>
</tr>
<tr>
<td>94</td>
<td>3YO P1 Passenger Nij (N_{TF}) vs. Time</td>
<td>B-26</td>
</tr>
<tr>
<td>95</td>
<td>3YO P1 Passenger Nij (N_{TE}) vs. Time</td>
<td>B-26</td>
</tr>
<tr>
<td>96</td>
<td>3YO P1 Passenger Nij (N_{CF}) vs. Time</td>
<td>B-26</td>
</tr>
<tr>
<td>97</td>
<td>3YO P1 Passenger Nij (N_{CE}) vs. Time</td>
<td>B-26</td>
</tr>
<tr>
<td>98</td>
<td>3YO P2 Passenger Head X Acceleration vs. Time</td>
<td>B-27</td>
</tr>
<tr>
<td>99</td>
<td>3YO P2 Passenger Head Y Acceleration vs. Time</td>
<td>B-27</td>
</tr>
<tr>
<td>100</td>
<td>3YO P2 Passenger Head Z Acceleration vs. Time</td>
<td>B-27</td>
</tr>
<tr>
<td>101</td>
<td>3YO P2 Passenger Head Resultant Acceleration vs. Time</td>
<td>B-27</td>
</tr>
<tr>
<td>102</td>
<td>3YO P2 Passenger Head X Velocity vs. Time</td>
<td>B-27</td>
</tr>
<tr>
<td>103</td>
<td>3YO P2 Passenger Head Y Velocity vs. Time</td>
<td>B-27</td>
</tr>
<tr>
<td>104</td>
<td>3YO P2 Passenger Head Z Velocity vs. Time</td>
<td>B-27</td>
</tr>
<tr>
<td>105</td>
<td>3YO P2 Passenger Neck Force X vs. Time</td>
<td>B-29</td>
</tr>
<tr>
<td>106</td>
<td>3YO P2 Passenger Neck Force Y vs. Time</td>
<td>B-29</td>
</tr>
<tr>
<td>107</td>
<td>3YO P2 Passenger Neck Force Z vs. Time</td>
<td>B-29</td>
</tr>
<tr>
<td>108</td>
<td>3YO P2 Passenger Neck Force Resultant vs. Time</td>
<td>B-29</td>
</tr>
<tr>
<td>109</td>
<td>3YO P2 Passenger Neck Moment X vs. Time</td>
<td>B-30</td>
</tr>
<tr>
<td>110</td>
<td>3YO P2 Passenger Neck Moment Y vs. Time</td>
<td>B-30</td>
</tr>
<tr>
<td>111</td>
<td>3YO P2 Passenger Neck Moment Z vs. Time</td>
<td>B-30</td>
</tr>
<tr>
<td>112</td>
<td>3YO P2 Passenger Occipital Condyle Moment vs. Time</td>
<td>B-30</td>
</tr>
<tr>
<td>113</td>
<td>3YO P2 Passenger Chest X Acceleration vs. Time</td>
<td>B-31</td>
</tr>
<tr>
<td>114</td>
<td>3YO P2 Passenger Chest Y Acceleration vs. Time</td>
<td>B-31</td>
</tr>
<tr>
<td>115</td>
<td>3YO P2 Passenger Chest Z Acceleration vs. Time</td>
<td>B-31</td>
</tr>
<tr>
<td>116</td>
<td>3YO P2 Passenger Chest Resultant Acceleration vs. Time</td>
<td>B-31</td>
</tr>
<tr>
<td>117</td>
<td>3YO P2 Passenger Chest X Velocity vs. Time</td>
<td>B-32</td>
</tr>
</tbody>
</table>
Figure No. 118. 3YO P2 Passenger Chest Y Velocity vs. Time
Figure No. 119. 3YO P2 Passenger Chest Z Velocity vs. Time
Figure No. 120. 3YO P2 Passenger Chest Displacement vs. Time
Figure No. 121. Fire Voltage #1 vs. Time
Figure No. 122. Fire Current #1 vs. Time
Figure No. 123. Fire Voltage #2 vs. Time
Figure No. 124. Fire Current #2 vs. Time
Figure No. 125. 3YO P2 Passenger Nij (N_{TF}) vs. Time
Figure No. 126. 3YO P2 Passenger Nij (N_{TE}) vs. Time
Figure No. 127. 3YO P2 Passenger Nij (N_{CF}) vs. Time
Figure No. 128. 3YO P2 Passenger Nij (N_{CE}) vs. Time
Figure No. 129. 6YO P1 Passenger Head X Acceleration vs. Time
Figure No. 130. 6YO P1 Passenger Head Y Acceleration vs. Time
Figure No. 131. 6YO P1 Passenger Head Z Acceleration vs. Time
Figure No. 132. 6YO P1 Passenger Head Resultant Acceleration vs. Time
Figure No. 133. 6YO P1 Passenger Head X Velocity vs. Time
Figure No. 134. 6YO P1 Passenger Head Y Velocity vs. Time
Figure No. 135. 6YO P1 Passenger Head Z Velocity vs. Time
Figure No. 136. 6YO P1 Passenger Neck Force X vs. Time
Figure No. 137. 6YO P1 Passenger Neck Force Y vs. Time
Figure No. 138. 6YO P1 Passenger Neck Force Z vs. Time
Figure No. 139. 6YO P1 Passenger Neck Force Resultant vs. Time
Figure No. 140. 6YO P1 Passenger Neck Moment X vs. Time
Figure No. 141. 6YO P1 Passenger Neck Moment Y vs. Time
Figure No. 142. 6YO P1 Passenger Neck Moment Z vs. Time
Figure No. 143. 6YO P1 Passenger Occipital Condyle Moment vs. Time
Figure No. 144. 6YO P1 Passenger Chest X Acceleration vs. Time
Figure No. 145. 6YO P1 Passenger Chest Y Acceleration vs. Time
Figure No. 146. 6YO P1 Passenger Chest Z Acceleration vs. Time
Figure No. 147. 6YO P1 Passenger Chest Resultant Acceleration vs. Time
Figure No. 148. 6YO P1 Passenger Chest X Velocity vs. Time B-40
Figure No. 149. 6YO P1 Passenger Chest Y Velocity vs. Time B-40
Figure No. 150. 6YO P1 Passenger Chest Z Velocity vs. Time B-40
Figure No. 151. 6YO P1 Passenger Chest Displacement vs. Time B-40
Figure No. 152. Fire Voltage #1 vs. Time B-41
Figure No. 153. Fire Current #1 vs. Time B-41
Figure No. 154. Fire Voltage #2 vs. Time B-41
Figure No. 155. Fire Current #2 vs. Time B-41
Figure No. 156. 6YO P1 Passenger Nij (N_{TF}) vs. Time B-42
Figure No. 157. 6YO P1 Passenger Nij (N_{TE}) vs. Time B-42
Figure No. 158. 6YO P1 Passenger Nij (N_{CF}) vs. Time B-42
Figure No. 159. 6YO P1 Passenger Nij (N_{CE}) vs. Time B-42
Figure No. 160. 6YO P2 Passenger Head X Acceleration vs. Time B-43
Figure No. 161. 6YO P2 Passenger Head Y Acceleration vs. Time B-43
Figure No. 162. 6YO P2 Passenger Head Z Acceleration vs. Time B-43
Figure No. 163. 6YO P2 Passenger Head Resultant Acceleration vs. Time B-43
Figure No. 164. 6YO P2 Passenger Head X Velocity vs. Time B-44
Figure No. 165. 6YO P2 Passenger Head Y Velocity vs. Time B-44
Figure No. 166. 6YO P2 Passenger Head Z Velocity vs. Time B-44
Figure No. 167. 6YO P2 Passenger Neck Force X vs. Time B-45
Figure No. 168. 6YO P2 Passenger Neck Force Y vs. Time B-45
Figure No. 169. 6YO P2 Passenger Neck Force Z vs. Time B-45
Figure No. 170. 6YO P2 Passenger Neck Force Resultant vs. Time B-45
Figure No. 171. 6YO P2 Passenger Neck Moment X vs. Time B-46
Figure No. 172. 6YO P2 Passenger Neck Moment Y vs. Time B-46
Figure No. 173. 6YO P2 Passenger Neck Moment Z vs. Time B-46
Figure No. 174. 6YO P2 Passenger Occipital Condyle Moment vs. Time B-46
Figure No. 175. 6YO P2 Passenger Chest X Acceleration vs. Time B-47
Figure No. 176. 6YO P2 Passenger Chest Y Acceleration vs. Time B-47
Figure No. 177. 6YO P2 Passenger Chest Z Acceleration vs. Time B-47
<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>178</td>
<td>6YO P2 Passenger Chest Resultant Acceleration vs. Time</td>
<td>B-47</td>
</tr>
<tr>
<td>179</td>
<td>6YO P2 Passenger Chest X Velocity vs. Time</td>
<td>B-48</td>
</tr>
<tr>
<td>180</td>
<td>6YO P2 Passenger Chest Y Velocity vs. Time</td>
<td>B-48</td>
</tr>
<tr>
<td>181</td>
<td>6YO P2 Passenger Chest Z Velocity vs. Time</td>
<td>B-48</td>
</tr>
<tr>
<td>182</td>
<td>6YO P2 Passenger Chest Displacement vs. Time</td>
<td>B-48</td>
</tr>
<tr>
<td>183</td>
<td>Fire Voltage #1 vs. Time</td>
<td>B-49</td>
</tr>
<tr>
<td>184</td>
<td>Fire Current #1 vs. Time</td>
<td>B-49</td>
</tr>
<tr>
<td>185</td>
<td>Fire Voltage #2 vs. Time</td>
<td>B-49</td>
</tr>
<tr>
<td>186</td>
<td>Fire Current #2 vs. Time</td>
<td>B-49</td>
</tr>
<tr>
<td>187</td>
<td>6YO P2 Passenger Nij (N_{TF}) vs. Time</td>
<td>B-50</td>
</tr>
<tr>
<td>188</td>
<td>6YO P2 Passenger Nij (N_{TE}) vs. Time</td>
<td>B-50</td>
</tr>
<tr>
<td>189</td>
<td>6YO P2 Passenger Nij (N_{CF}) vs. Time</td>
<td>B-50</td>
</tr>
<tr>
<td>190</td>
<td>6YO P2 Passenger Nij (N_{CE}) vs. Time</td>
<td>B-50</td>
</tr>
</tbody>
</table>
LOW RISK DEPLOYMENT

2009 BMW 128i (C90514) (5th P1)

Test Date: 4/22/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 185ms

5TH FEM. DRIVER HEAD X (G's) vs TIME (ms)
Max: 8.9 G's
Tmax: 184.9 ms
Min: -26.0 G's
Tmin: 8.2 ms
CFC 1000

5TH FEM. DRIVER HEAD Y (G's) vs TIME (ms)
Max: 8.4 G's
Tmax: 6.3 ms
Min: -8.6 G's
Tmin: 9.6 ms
CFC 1000

5TH FEM. DRIVER HEAD Z (G's) vs TIME (ms)
Max: 12.1 G's
Tmax: 9.3 ms
Min: -11.0 G's
Tmin: 5.2 ms
CFC 1000

5TH FEM. DRIVER HEAD Resultant (G's) vs TIME (ms)
Max: 27.5 G's
Tmax: 8.9 ms
Min: 0.0 G's
Tmin: 1.9 ms
CFC 1000
Injury Values Calculated between 0ms and 185ms

5TH FEM. DRIVER HEAD X Velocity (kph) vs TIME (ms)
- Max: 0.0 kph
- Tmax: 3.7 ms
- Min: -18.6 kph
- Tmin: 45.8 ms
- CFC 180

5TH FEM. DRIVER HEAD Y Velocity (kph) vs TIME (ms)
- Max: 3.8 kph
- Tmax: 185.0 ms
- Min: -0.4 kph
- Tmin: 11.8 ms
- CFC 180

5TH FEM. DRIVER HEAD Z Velocity (kph) vs TIME (ms)
- Max: 25.5 kph
- Tmax: 185.0 ms
- Min: -0.2 kph
- Tmin: 6.0 ms
- CFC 180
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (5th P1)

Test Date: 4/22/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 185ms

5TH FEM. DRIVER NECK FX (N) vs TIME (ms)
- Max: 563.8 N
- Tmax: 15.3 ms
- Min: -110.1 N
- Tmin: 37.0 ms
- CFC 1000

5TH FEM. DRIVER NECK FY (N) vs TIME (ms)
- Max: 41.4 N
- Tmax: 9.7 ms
- Min: -61.1 N
- Tmin: 6.4 ms
- CFC 1000

5TH FEM. DRIVER NECK FZ (N) vs TIME (ms)
- Max: 808.3 N
- Tmax: 27.1 ms
- Min: -4.5 N
- Tmin: 3.2 ms
- CFC 1000

5TH FEM. DRIVER NECK FResultant (N) vs TIME (ms)
- Max: 824.1 N
- Tmax: 26.7 ms
- Min: 1.3 N
- Tmin: 2.8 ms
- CFC 1000
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (5th P1)
Test Date: 4/22/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 185ms

5TH FEM. DRIVER NECK MX (Nm) vs TIME (ms)
Max: 3.3 Nm
Tmax: 22.5 ms
Min: -6.0 Nm
Tmin: 15.1 ms
CFC 600

5TH FEM. DRIVER NECK MY (Nm) vs TIME (ms)
Max: 46.0 Nm
Tmax: 15.5 ms
Min: -13.1 Nm
Tmin: 73.3 ms
CFC 600

5TH FEM. DRIVER NECK MZ (Nm) vs TIME (ms)
Max: 1.7 Nm
Tmax: 15.4 ms
Min: -2.6 Nm
Tmin: 40.7 ms
CFC 600

Drv. Occipital Condyle Moment (Nm) vs TIME (ms)
Max: 36.1 Nm
Tmax: 15.6 ms
Min: -13.5 Nm
Tmin: 73.4 ms
CFC 600
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (5th P1)

Test Date: 4/22/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 185ms

5TH FEM. DRIVER CHEST X (G's) vs TIME (ms)
Max: 3.3 G's
Tmax: 44.9 ms
Min: -14.5 G's
Tmin: 10.5 ms
CFC 180

5TH FEM. DRIVER CHEST Y (G's) vs TIME (ms)
Max: 1.8 G's
Tmax: 24.9 ms
Min: -1.8 G's
Tmin: 13.1 ms
CFC 180

5TH FEM. DRIVER CHEST Z (G's) vs TIME (ms)
Max: 3.5 G's
Tmax: 9.9 ms
Min: -5.3 G's
Tmin: 6.6 ms
CFC 180

5TH FEM. DRIVER CHEST Resultant (G's) vs TIME (ms)
Max: 14.8 G's
Tmax: 10.5 ms
Min: 0.0 G's
Tmin: 1.9 ms
CFC 180
Injury Values Calculated between 0ms and 185ms

5TH FEM. DRIVER CHEST X Velocity (kph) vs TIME (ms)
Max: 0.0 kph
Tmax: 5.7 ms
Min: -8.0 kph
Tmin: 39.9 ms
CFC 180

5TH FEM. DRIVER CHEST Y Velocity (kph) vs TIME (ms)
Max: 1.7 kph
Tmax: 148.9 ms
Min: -0.2 kph
Tmin: 18.7 ms
CFC 180

5TH FEM. DRIVER CHEST Z Velocity (kph) vs TIME (ms)
Max: 8.4 kph
Tmax: 185.0 ms
Min: -0.4 kph
Tmin: 8.5 ms
CFC 180

5TH FEM. DRIVER CHEST DISPLACEMENT (mm) vs TIME (ms)
Max: 0.0 mm
Tmax: 5.3 ms
Min: -7.6 mm
Tmin: 37.2 ms
CFC 600
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (5th P1)

Test Date: 4/22/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 185ms

5TH FEM. DRIVER LEFT FEMUR (N) vs TIME (ms)

Max: 140.9 N
Tmax: 39.0 ms
Min: -50.8 N
Tmin: 12.8 ms
CFC 600

5TH FEM. DRIVER RIGHT FEMUR (N) vs TIME (ms)

Max: 152.8 N
Tmax: 32.5 ms
Min: -54.4 N
Tmin: 13.6 ms
CFC 600
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (5th P1)

Test Date: 4/22/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 185ms

FIRE VOLTAGE #1 (Volts) vs TIME (ms)
Max: 16.6 Volts
Tmax: 0.3 ms
Min: -1.1 Volts
Tmin: 10.3 ms
CFC 1000

FIRE CURRENT #1 (Amps) vs TIME (ms)
Max: 3.0 Amps
Tmax: 0.2 ms
Min: -0.0 Amps
Tmin: 171.1 ms
CFC 1000

FIRE VOLTAGE #2 (Volts) vs TIME (ms)
Max: 16.8 Volts
Tmax: 60.3 ms
Min: -1.1 Volts
Tmin: 70.3 ms
CFC 1000

FIRE CURRENT #2 (Amps) vs TIME (ms)
Max: 2.8 Amps
Tmax: 60.2 ms
Min: -0.2 Amps
Tmin: 59.8 ms
CFC 1000
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (5th P1)
Test Date: 4/22/09
Speed: 0.0 mph (0.0 km/h)

Graph 1: Drv. nij (NTF) () vs TIME SPECIAL CHS (ms)
- Max: 0.3
- Tmax: 11.8 ms
- Min: 0.0
- Tmin: 0.1 ms
- CFC 600

Graph 2: Drv. nij (NTE) () vs TIME SPECIAL CHS (ms)
- Max: 0.3
- Tmax: 73.0 ms
- Min: 0.0
- Tmin: 0.1 ms
- CFC 600

Graph 3: Drv. nij (NCF) () vs TIME SPECIAL CHS (ms)
- Max: 0.0
- Tmax: 1.1 ms
- Min: 0.0
- Tmin: 0.1 ms
- CFC 600

Graph 4: Drv. nij (NCE) () vs TIME SPECIAL CHS (ms)
- Max: 0.0
- Tmax: 3.1 ms
- Min: 0.0
- Tmin: 0.2 ms
- CFC 600
Injury Values Calculated between 0ms and 185ms

5TH FEM. DRIVER HEAD X (G's) vs TIME (ms)
- Max: 29.1 G's
- Tmax: 55.9 ms
- Min: -14.1 G's
- Tmin: 31.6 ms
- CFC 1000

5TH FEM. DRIVER HEAD Y (G's) vs TIME (ms)
- Max: 4.3 G's
- Tmax: 54.1 ms
- Min: -4.1 G's
- Tmin: 27.0 ms
- CFC 1000

5TH FEM. DRIVER HEAD Z (G's) vs TIME (ms)
- Max: 19.8 G's
- Tmax: 8.6 ms
- Min: -3.7 G's
- Tmin: 62.5 ms
- CFC 1000

5TH FEM. DRIVER HEAD Resultant (G's) vs TIME (ms)
- Max: 29.5 G's
- Tmax: 55.2 ms
- Min: 0.0 G's
- Tmin: 2.7 ms
- CFC 1000
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (5th P2)

Test Date: 4/22/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 185ms

5TH FEM. DRIVER HEAD X Velocity (kph) vs TIME (ms)
- Max: 0.0 kph
- Tmax: 7.2 ms
- Min: -13.6 kph
- Tmin: 48.3 ms
- CFC 180

5TH FEM. DRIVER HEAD Y Velocity (kph) vs TIME (ms)
- Max: 0.1 kph
- Tmax: 21.3 ms
- Min: -2.4 kph
- Tmin: 90.8 ms
- CFC 180

5TH FEM. DRIVER HEAD Z Velocity (kph) vs TIME (ms)
- Max: 6.5 kph
- Tmax: 58.4 ms
- Min: -0.1 kph
- Tmin: 6.6 ms
- CFC 180
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (5th P2)

Test Date: 4/22/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 185ms

5TH FEM. DRIVER NECK FX (N) vs TIME (ms)
Max: 128.9 N
Tmax: 57.7 ms
Min: -679.0 N
Tmin: 30.5 ms
CFC 1000

5TH FEM. DRIVER NECK FY (N) vs TIME (ms)
Max: 38.7 N
Tmax: 32.3 ms
Min: -93.0 N
Tmin: 66.3 ms
CFC 1000

5TH FEM. DRIVER NECK FZ (N) vs TIME (ms)
Max: 733.3 N
Tmax: 9.6 ms
Min: -181.3 N
Tmin: 64.7 ms
CFC 1000

5TH FEM. DRIVER NECK FResultant (N) vs TIME (ms)
Max: 900.8 N
Tmax: 29.5 ms
Min: 0.5 N
Tmin: 0.9 ms
CFC 1000
Injury Values Calculated between 0ms and 185ms

5TH FEM. DRIVER NECK MX (Nm) vs TIME (ms)
Max: 9.0 Nm
Tmax: 23.4 ms
Min: -8.1 Nm
Tmin: 58.0 ms
CFC 600

5TH FEM. DRIVER NECK MY (Nm) vs TIME (ms)
Max: 39.7 Nm
Tmax: 59.6 ms
Min: -36.5 Nm
Tmin: 31.2 ms
CFC 600

5TH FEM. DRIVER NECK MZ (Nm) vs TIME (ms)
Max: 1.7 Nm
Tmax: 21.4 ms
Min: -7.6 Nm
Tmin: 125.0 ms
CFC 600

Drv. Occipital Condyle Moment (Nm) vs TIME (ms)
Max: 37.8 Nm
Tmax: 60.2 ms
Min: -24.6 Nm
Tmin: 31.1 ms
CFC 600
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (5th P2)

Test Date: 4/22/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 185ms

5TH FEM. DRIVER CHEST X (G's) vs TIME (ms)

Max: 5.6 G's
Tmax: 15.1 ms
Min: -28.5 G's
Tmin: 8.6 ms
CFC 180

5TH FEM. DRIVER CHEST Y (G's) vs TIME (ms)

Max: 1.5 G's
Tmax: 61.4 ms
Min: -4.7 G's
Tmin: 17.6 ms
CFC 180

5TH FEM. DRIVER CHEST Z (G's) vs TIME (ms)

Max: 6.9 G's
Tmax: 9.7 ms
Min: -3.0 G's
Tmin: 54.3 ms
CFC 180

5TH FEM. DRIVER CHEST Resultant (G's) vs TIME (ms)

Max: 29.0 G's
Tmax: 8.7 ms
Min: 0.0 G's
Tmin: 1.3 ms
CFC 180

B-14
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (5th P2)

Test Date: 4/22/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 185ms

5TH FEM. DRIVER CHEST X Velocity (kph) vs TIME (ms)
Max: 0.4 kph
Tmax: 185.0 ms
Min: -7.0 kph
Tmin: 39.8 ms
CFC 180

5TH FEM. DRIVER CHEST Y Velocity (kph) vs TIME (ms)
Max: 0.3 kph
Tmax: 185.0 ms
Min: -2.5 kph
Tmin: 50.4 ms
CFC 180

5TH FEM. DRIVER CHEST Z Velocity (kph) vs TIME (ms)
Max: 3.0 kph
Tmax: 94.5 ms
Min: 0.0 kph
Tmin: 3.4 ms
CFC 180

5TH FEM. DRIVER CHEST DISPLACEMENT (mm) vs TIME (ms)
Max: 0.0 mm
Tmax: 1.4 ms
Min: -16.5 mm
Tmin: 10.2 ms
CFC 600
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (5th P2)

Test Date: 4/22/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 185ms

5TH FEM. DRIVER LEFT FEMUR (N) vs TIME (ms)

Max: 209.1 N
Tmax: 12.7 ms
Min: -23.3 N
Tmin: 173.5 ms
CFC 600

5TH FEM. DRIVER RIGHT FEMUR (N) vs TIME (ms)

Max: 248.4 N
Tmax: 33.1 ms
Min: -14.5 N
Tmin: 7.6 ms
CFC 600
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (5th P2)

Test Date: 4/22/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 185ms

FIRE VOLTAGE #1 (Volts) vs TIME (ms)
Max: 17.1 Volts
Tmax: 0.3 ms
Min: -1.2 Volts
Tmin: 10.3 ms
CFC 1000

FIRE CURRENT #1 (Amps) vs TIME (ms)
Max: 2.4 Amps
Tmax: 0.1 ms
Min: -0.0 Amps
Tmin: 10.2 ms
CFC 1000

FIRE VOLTAGE #2 (Volts) vs TIME (ms)
Max: 17.0 Volts
Tmax: 60.3 ms
Min: -1.2 Volts
Tmin: 70.3 ms
CFC 1000

FIRE CURRENT #2 (Amps) vs TIME (ms)
Max: 2.6 Amps
Tmax: 60.1 ms
Min: -0.1 Amps
Tmin: 59.7 ms
CFC 1000
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (5th P2)

Test Date: 4/22/09
Speed: 0.0 mph (0.0 km/h)

Drv. nij (NTF) () vs TIME SPECIAL CHS (ms)
Max: 0.3
Tmax: 55.1 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

Drv. nij (NTE) () vs TIME SPECIAL CHS (ms)
Max: 0.5
Tmax: 29.9 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

Drv. nij (NCF) () vs TIME SPECIAL CHS (ms)
Max: 0.3
Tmax: 61.3 ms
Min: 0.0
Tmin: 0.4 ms
CFC 600

Drv. nij (NCE) () vs TIME SPECIAL CHS (ms)
Max: 0.0
Tmax: 6.2 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (3YO P1)
Test Date: 4/22/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER HEAD X (G's) vs TIME (ms)
Max: 2.4 G's
Tmax: 80.1 ms
Min: -90.8 G's
Tmin: 13.5 ms
CFC 1000

3YR OLD PASSENGER HEAD Y (G's) vs TIME (ms)
Max: 21.3 G's
Tmax: 14.3 ms
Min: -4.8 G's
Tmin: 25.0 ms
CFC 1000

3YR OLD PASSENGER HEAD Z (G's) vs TIME (ms)
Max: 21.3 G's
Tmax: 14.5 ms
Min: -15.1 G's
Tmin: 13.3 ms
CFC 1000

3YR OLD PASSENGER HEAD Resultant (G's) vs TIME (ms)
Max: 90.9 G's
Tmax: 13.5 ms
Min: 0.0 G's
Tmin: 0.1 ms
CFC 1000
Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER HEAD X Velocity (kph) vs TIME (ms)
Max: -0.0 kph
Tmax: 7.0 ms
Min: -12.6 kph
Tmin: 48.2 ms
CFC 180

3YR OLD PASSENGER HEAD Y Velocity (kph) vs TIME (ms)
Max: 1.4 kph
Tmax: 98.4 ms
Min: -0.1 kph
Tmin: 13.0 ms
CFC 180

3YR OLD PASSENGER HEAD Z Velocity (kph) vs TIME (ms)
Max: 11.9 kph
Tmax: 100.0 ms
Min: -0.1 kph
Tmin: 19.3 ms
CFC 180
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (3YO P1)

Test Date: 4/22/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER NECK FX (N) vs TIME (ms)
Max: 679.0 N
Tmax: 13.7 ms
Min: -11.3 N
Tmin: 37.9 ms
CFC 1000

3YR OLD PASSENGER NECK FY (N) vs TIME (ms)
Max: 42.7 N
Tmax: 29.1 ms
Min: -54.5 N
Tmin: 14.2 ms
CFC 1000

3YR OLD PASSENGER NECK FZ (N) vs TIME (ms)
Max: 532.4 N
Tmax: 14.3 ms
Min: -7.2 N
Tmin: 10.9 ms
CFC 1000

3YR OLD PASSENGER NECK FResultant (N) vs TIME (ms)
Max: 783.1 N
Tmax: 14.5 ms
Min: 0.5 N
Tmin: 1.8 ms
CFC 1000
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (3YO P1)

Test Date: 4/22/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER NECK MX (Nm) vs TIME (ms)
Max: 1.2 Nm
Tmax: 67.3 ms
Min: -7.8 Nm
Tmin: 29.3 ms
CFC 600

3YR OLD PASSENGER NECK MY (Nm) vs TIME (ms)
Max: 22.7 Nm
Tmax: 16.0 ms
Min: -5.8 Nm
Tmin: 87.8 ms
CFC 600

3YR OLD PASSENGER NECK MZ (Nm) vs TIME (ms)
Max: 0.7 Nm
Tmax: 63.2 ms
Min: -1.4 Nm
Tmin: 23.9 ms
CFC 600

Pass. Occipital Condyle Moment (Nm) vs TIME (ms)
Max: 22.7 Nm
Tmax: 16.0 ms
Min: -5.8 Nm
Tmin: 87.8 ms
CFC 600
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (3YO P1)

Test Date: 4/22/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER CHEST X (G's) vs TIME (ms)
- Max: 3.7 G's
- Tmax: 25.4 ms
- Min: -14.4 G's
- Tmin: 17.3 ms
- CFC 180

3YR OLD PASSENGER CHEST Y (G's) vs TIME (ms)
- Max: 2.7 G's
- Tmax: 34.2 ms
- Min: -1.3 G's
- Tmin: 18.0 ms
- CFC 180

3YR OLD PASSENGER CHEST Z (G's) vs TIME (ms)
- Max: 2.0 G's
- Tmax: 23.3 ms
- Min: -12.1 G's
- Tmin: 14.4 ms
- CFC 180

3YR OLD PASSENGER CHEST Resultant (G's) vs TIME (ms)
- Max: 14.5 G's
- Tmax: 17.3 ms
- Min: 0.0 G's
- Tmin: 3.5 ms
- CFC 180

B-23
Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER CHEST X Velocity (kph) vs TIME (ms)
Max: 0.0 kph
Tmax: 14.1 ms
Min: -5.0 kph
Tmin: 100.0 ms
CFC 180

3YR OLD PASSENGER CHEST Y Velocity (kph) vs TIME (ms)
Max: 0.6 kph
Tmax: 57.3 ms
Min: -0.1 kph
Tmin: 19.1 ms
CFC 180

3YR OLD PASSENGER CHEST Z Velocity (kph) vs TIME (ms)
Max: 1.8 kph
Tmax: 100.0 ms
Min: -1.1 kph
Tmin: 33.8 ms
CFC 180

3YR OLD PASSENGER CHEST DISPLACEMENT (mm) vs TIME (ms)
Max: 0.2 mm
Tmax: 96.6 ms
Min: -3.2 mm
Tmin: 37.9 ms
CFC 600
Injury Values Calculated between 0ms and 100ms

FIRE VOLTAGE #1 (Volts) vs TIME (ms)

Max: 16.4 Volts
Tmax: 0.3 ms
Min: -0.9 Volts
Tmin: 10.3 ms
CFC 1000

FIRE CURRENT #1 (Amps) vs TIME (ms)

Max: 5.5 Amps
Tmax: 0.7 ms
Min: -0.0 Amps
Tmin: 10.3 ms
CFC 1000

FIRE VOLTAGE #2 (Volts) vs TIME (ms)

Max: 0.0 Volts
Tmax: 28.1 ms
Min: -0.0 Volts
Tmin: 45.5 ms
CFC 1000

FIRE CURRENT #2 (Amps) vs TIME (ms)

Max: 0.0 Amps
Tmax: 88.4 ms
Min: -0.0 Amps
Tmin: 0.7 ms
CFC 1000
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (3YO P2)

Test Date: 4/23/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER HEAD X (G's) vs TIME (ms)
Max: 3.3 G's
Tmax: 76.5 ms
Min: -66.0 G's
Tmin: 12.2 ms
CFC 1000

3YR OLD PASSENGER HEAD Y (G's) vs TIME (ms)
Max: 7.0 G's
Tmax: 16.0 ms
Min: -12.0 G's
Tmin: 10.9 ms
CFC 1000

3YR OLD PASSENGER HEAD Z (G's) vs TIME (ms)
Max: 9.0 G's
Tmax: 12.0 ms
Min: -6.2 G's
Tmin: 17.4 ms
CFC 1000

3YR OLD PASSENGER HEAD Resultant (G's) vs TIME (ms)
Max: 66.4 G's
Tmax: 12.2 ms
Min: 0.0 G's
Tmin: 1.8 ms
CFC 1000
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (3YO P2)
Test Date: 4/23/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER HEAD X Velocity (kph) vs TIME (ms)
- Max: 0.0 kph
- Tmax: 5.9 ms
- Min: -9.0 kph
- Tmin: 42.7 ms
- CFC 180

3YR OLD PASSENGER HEAD Y Velocity (kph) vs TIME (ms)
- Max: 0.2 kph
- Tmax: 26.5 ms
- Min: -0.5 kph
- Tmin: 14.8 ms
- CFC 180

3YR OLD PASSENGER HEAD Z Velocity (kph) vs TIME (ms)
- Max: 8.8 kph
- Tmax: 100.0 ms
- Min: 0.0 kph
- Tmin: 0.1 ms
- CFC 180
Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER NECK FX (N) vs TIME (ms)
Max: 313.8 N
Tmax: 12.3 ms
Min: -17.5 N
Tmin: 23.6 ms
CFC 1000

3YR OLD PASSENGER NECK FY (N) vs TIME (ms)
Max: 38.0 N
Tmax: 15.0 ms
Min: -6.9 N
Tmin: 31.0 ms
CFC 1000

3YR OLD PASSENGER NECK FZ (N) vs TIME (ms)
Max: 141.3 N
Tmax: 24.5 ms
Min: -266.8 N
Tmin: 12.9 ms
CFC 1000

3YR OLD PASSENGER NECK FResultant (N) vs TIME (ms)
Max: 385.4 N
Tmax: 12.4 ms
Min: 0.6 N
Tmin: 1.2 ms
CFC 1000
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (3YO P2)

Test Date: 4/23/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER NECK MX (Nm) vs TIME (ms)
Max: 2.3 Nm
Tmax: 50.1 ms
Min: -1.7 Nm
Tmin: 20.9 ms
CFC 600

3YR OLD PASSENGER NECK MY (Nm) vs TIME (ms)
Max: 11.0 Nm
Tmax: 13.7 ms
Min: -5.9 Nm
Tmin: 59.4 ms
CFC 600

3YR OLD PASSENGER NECK MZ (Nm) vs TIME (ms)
Max: 1.0 Nm
Tmax: 52.4 ms
Min: -0.5 Nm
Tmin: 76.9 ms
CFC 600

Pass. Occipital Condyle Moment (Nm) vs TIME (ms)
Max: 11.0 Nm
Tmax: 13.7 ms
Min: -5.9 Nm
Tmin: 59.4 ms
CFC 600

B-30
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (3YO P2)

Test Date: 4/23/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER CHEST X (G's) vs TIME (ms)
Max: 1.2 G's
Tmax: 26.2 ms
Min: -8.8 G's
Tmin: 13.7 ms
CFC 180

3YR OLD PASSENGER CHEST Y (G's) vs TIME (ms)
Max: 0.6 G's
Tmax: 25.3 ms
Min: -0.7 G's
Tmin: 15.7 ms
CFC 180

3YR OLD PASSENGER CHEST Z (G's) vs TIME (ms)
Max: 2.3 G's
Tmax: 11.4 ms
Min: -1.5 G's
Tmin: 15.7 ms
CFC 180

3YR OLD PASSENGER CHEST Resultant (G's) vs TIME (ms)
Max: 8.9 G's
Tmax: 13.6 ms
Min: 0.0 G's
Tmin: 2.4 ms
CFC 180
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (3YO P2)
Test Date: 4/23/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER CHEST X Velocity (kph) vs TIME (ms)
- Max: -0.0 kph
- Tmax: 0.1 ms
- Min: -3.3 kph
- Tmin: 100.0 ms
- CFC 180

3YR OLD PASSENGER CHEST Y Velocity (kph) vs TIME (ms)
- Max: 0.1 kph
- Tmax: 46.8 ms
- Min: -0.3 kph
- Tmin: 85.3 ms
- CFC 180

3YR OLD PASSENGER CHEST Z Velocity (kph) vs TIME (ms)
- Max: 1.1 kph
- Tmax: 100.0 ms
- Min: -0.2 kph
- Tmin: 45.1 ms
- CFC 180

3YR OLD PASSENGER CHEST DISPLACEMENT (mm) vs TIME (ms)
- Max: 0.2 mm
- Tmax: 18.4 ms
- Min: -0.6 mm
- Tmin: 31.8 ms
- CFC 600
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (3YO P2)

Test Date: 4/23/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

FIRE VOLTAGE #1 (Volts) vs TIME (ms)
Max: 15.7 Volts
Tmax: 0.4 ms
Min: -0.7 Volts
Tmin: 10.4 ms
CFC 1000

FIRE CURRENT #1 (Amps) vs TIME (ms)
Max: 6.1 Amps
Tmax: 0.3 ms
Min: -0.0 Amps
Tmin: 10.3 ms
CFC 1000

FIRE VOLTAGE #2 (Volts) vs TIME (ms)
Max: 0.0 Volts
Tmax: 91.8 ms
Min: -0.0 Volts
Tmin: 18.1 ms
CFC 1000

FIRE CURRENT #2 (Amps) vs TIME (ms)
Max: 0.0 Amps
Tmax: 11.6 ms
Min: -0.0 Amps
Tmin: 0.3 ms
CFC 1000
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (3YO P2)
Test Date: 4/23/09
Speed: 0.0 mph (0.0 km/h)

PASS. nij (NTF) () vs TIME SPECIAL CHS (ms)
Max: 0.0
Tmax: 18.5 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

Pass. nij (NTE) () vs TIME SPECIAL CHS (ms)
Max: 0.3
Tmax: 59.4 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

Pass. nij (NCF) () vs TIME SPECIAL CHS (ms)
Max: 0.3
Tmax: 13.0 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

Pass. nij (NCE) () vs TIME SPECIAL CHS (ms)
Max: 0.0
Tmax: 9.4 ms
Min: 0.0
Tmin: 0.4 ms
CFC 600
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (6YO P1)

Test Date: 4/23/09
Speed: 0.0 mph (0.0 km/h)

6YR OLD PASSENGER HEAD X (G's) vs TIME (ms)

Max: 13.8 G's
Tmax: 15.2 ms
Min: -55.0 G's
Tmin: 13.8 ms

6YR OLD PASSENGER HEAD Y (G's) vs TIME (ms)

Max: 25.7 G's
Tmax: 15.4 ms
Min: -10.6 G's
Tmin: 14.1 ms

6YR OLD PASSENGER HEAD Z (G's) vs TIME (ms)

Max: 15.1 G's
Tmax: 15.4 ms
Min: -5.7 G's
Tmin: 14.5 ms

6YR OLD PASSENGER HEAD Resultant (G's) vs TIME (ms)

Max: 55.5 G's
Tmax: 13.8 ms
Min: 0.0 G's
Tmin: 0.7 ms

Injury Values Calculated between 0ms and 100ms

CFC 1000
Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER HEAD X Velocity (kph) vs TIME (ms)
Max: 0.0 kph
Tmax: 10.2 ms
Min: -7.1 kph
Tmin: 52.9 ms
CFC 180

6YR OLD PASSENGER HEAD Y Velocity (kph) vs TIME (ms)
Max: 2.1 kph
Tmax: 18.5 ms
Min: -0.4 kph
Tmin: 14.4 ms
CFC 180

6YR OLD PASSENGER HEAD Z Velocity (kph) vs TIME (ms)
Max: 6.8 kph
Tmax: 100.0 ms
Min: -0.0 kph
Tmin: 12.4 ms
CFC 180
Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER NECK FX (N) vs TIME (ms)
- Max: 337.0 N
- Tmax: 17.7 ms
- Min: -6.5 N
- Tmin: 10.7 ms

6YR OLD PASSENGER NECK FY (N) vs TIME (ms)
- Max: 70.0 N
- Tmax: 14.8 ms
- Min: -25.8 N
- Tmin: 11.1 ms

6YR OLD PASSENGER NECK FZ (N) vs TIME (ms)
- Max: 450.4 N
- Tmax: 18.8 ms
- Min: -11.0 N
- Tmin: 11.3 ms

6YR OLD PASSENGER NECK FResultant (N) vs TIME (ms)
- Max: 531.4 N
- Tmax: 18.9 ms
- Min: 0.6 N
- Tmin: 6.5 ms
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (6YO P1)
Test Date: 4/23/09
Speed: 0.0 mph (0.0 km/h)

6YR OLD PASSENGER NECK MX (Nm) vs TIME (ms)
Max: 1.8 Nm
Tmax: 24.5 ms
Min: -2.9 Nm
Tmin: 14.9 ms
CFC 600

6YR OLD PASSENGER NECK MY (Nm) vs TIME (ms)
Max: 20.6 Nm
Tmax: 17.8 ms
Min: -5.1 Nm
Tmin: 77.8 ms
CFC 600

6YR OLD PASSENGER NECK MZ (Nm) vs TIME (ms)
Max: 1.5 Nm
Tmax: 58.1 ms
Min: -0.9 Nm
Tmin: 26.0 ms
CFC 600

Pass. Occipital Condyle Moment (Nm) vs TIME (ms)
Max: 14.9 Nm
Tmax: 18.0 ms
Min: -5.8 Nm
Tmin: 77.3 ms
CFC 600
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (6YO P1)

Test Date: 4/23/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER CHEST X (G's) vs TIME (ms)
Max: 1.3 G's
Tmax: 25.8 ms
Min: -7.7 G's
Tmin: 17.5 ms
CFC 180

6YR OLD PASSENGER CHEST Y (G's) vs TIME (ms)
Max: 0.5 G's
Tmax: 25.2 ms
Min: -1.2 G's
Tmin: 28.4 ms
CFC 180

6YR OLD PASSENGER CHEST Z (G's) vs TIME (ms)
Max: 1.8 G's
Tmax: 24.3 ms
Min: -4.6 G's
Tmin: 15.5 ms
CFC 180

6YR OLD PASSENGER CHEST Resultant (G's) vs TIME (ms)
Max: 7.9 G's
Tmax: 17.6 ms
Min: 0.0 G's
Tmin: 4.5 ms
CFC 180
Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER CHEST X Velocity (kph) vs TIME (ms)
- Max: 0.0 kph
- Tmax: 14.4 ms
- Min: -2.5 kph
- Tmin: 100.0 ms
- CFC 180

6YR OLD PASSENGER CHEST Y Velocity (kph) vs TIME (ms)
- Max: 0.0 kph
- Tmax: 100.0 ms
- Min: -0.3 kph
- Tmin: 45.8 ms
- CFC 180

6YR OLD PASSENGER CHEST Z Velocity (kph) vs TIME (ms)
- Max: 1.6 kph
- Tmax: 100.0 ms
- Min: -0.8 kph
- Tmin: 32.8 ms
- CFC 180

6YR OLD PASSENGER CHEST DISPLACEMENT (mm) vs TIME (ms)
- Max: 0.9 mm
- Tmax: 31.3 ms
- Min: -1.5 mm
- Tmin: 21.6 ms
- CFC 600
Injury Values Calculated between 0ms and 100ms

FIRE VOLTAGE #1 (Volts) vs TIME (ms)
- Max: 16.4 Volts
- Tmax: 0.3 ms
- Min: -0.9 Volts
- Tmin: 10.3 ms
- CFC 1000

FIRE CURRENT #1 (Amps) vs TIME (ms)
- Max: 4.5 Amps
- Tmax: 0.8 ms
- Min: -0.0 Amps
- Tmin: 10.3 ms
- CFC 1000

FIRE VOLTAGE #2 (Volts) vs TIME (ms)
- Max: 0.0 Volts
- Tmax: 33.8 ms
- Min: -0.0 Volts
- Tmin: 56.2 ms
- CFC 1000

FIRE CURRENT #2 (Amps) vs TIME (ms)
- Max: 0.0 Amps
- Tmax: 61.5 ms
- Min: -0.0 Amps
- Tmin: 0.7 ms
- CFC 1000
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (6YO P1)
Test Date: 4/23/09
Speed: 0.0 mph (0.0 km/h)

PASS. nij (NTF) () vs TIME SPECIAL CHS (ms)
Max: 0.3
Tmax: 18.9 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

Pass. nij (NTE) () vs TIME SPECIAL CHS (ms)
Max: 0.2
Tmax: 74.1 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

Pass. nij (NCF) () vs TIME SPECIAL CHS (ms)
Max: 0.0
Tmax: 11.2 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

Pass. nij (NCE) () vs TIME SPECIAL CHS (ms)
Max: 0.0
Tmax: 0.3 ms
Min: 0.0
Tmin: 0.5 ms
CFC 600
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (6YO P2)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER HEAD X (G's) vs TIME (ms)
- Max: 3.2 G's
- Tmax: 78.3 ms
- Min: -66.3 G's
- Tmin: 10.6 ms

6YR OLD PASSENGER HEAD Y (G's) vs TIME (ms)
- Max: 2.3 G's
- Tmax: 34.9 ms
- Min: -11.4 G's
- Tmin: 21.0 ms

6YR OLD PASSENGER HEAD Z (G's) vs TIME (ms)
- Max: 18.9 G's
- Tmax: 10.6 ms
- Min: -3.7 G's
- Tmin: 19.6 ms

6YR OLD PASSENGER HEAD Resultant (G's) vs TIME (ms)
- Max: 69.5 G's
- Tmax: 10.6 ms
- Min: 0.0 G's
- Tmin: 1.6 ms

Test Date: 4/23/09
Speed: 0.0 mph (0.0 km/h)

B-43
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (6YO P2)

Test Date: 4/23/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER NECK FX (N) vs TIME (ms)
Max: 550.4 N
Tmax: 16.7 ms
Min: -71.1 N
Tmin: 31.9 ms
CFC 1000

6YR OLD PASSENGER NECK FY (N) vs TIME (ms)
Max: 68.7 N
Tmax: 18.1 ms
Min: -13.9 N
Tmin: 91.9 ms
CFC 1000

6YR OLD PASSENGER NECK FZ (N) vs TIME (ms)
Max: 544.4 N
Tmax: 29.9 ms
Min: -585.7 N
Tmin: 13.7 ms
CFC 1000

6YR OLD PASSENGER NECK FResultant (N) vs TIME (ms)
Max: 754.2 N
Tmax: 16.6 ms
Min: 1.0 N
Tmin: 6.3 ms
CFC 1000
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (6YO P2)

Test Date: 4/23/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER NECK MX (Nm) vs TIME (ms)
Max: 2.6 Nm
Tmax: 33.1 ms
Min: -1.8 Nm
Tmin: 19.0 ms
CFC 600

6YR OLD PASSENGER NECK MY (Nm) vs TIME (ms)
Max: 35.7 Nm
Tmax: 16.8 ms
Min: -20.3 Nm
Tmin: 34.1 ms
CFC 600

6YR OLD PASSENGER NECK MZ (Nm) vs TIME (ms)
Max: 1.1 Nm
Tmax: 47.8 ms
Min: -0.2 Nm
Tmin: 12.1 ms
CFC 600

Pass. Occipital Condyle Moment (Nm) vs TIME (ms)
Max: 26.3 Nm
Tmax: 16.9 ms
Min: -19.3 Nm
Tmin: 34.4 ms
CFC 600
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (6YO P2)

Test Date: 4/23/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER CHEST X (G's) vs TIME (ms)
Max: 4.8 G's
Tmax: 30.5 ms
Min: -10.1 G's
Tmin: 16.1 ms
CFC 180

6YR OLD PASSENGER CHEST Y (G's) vs TIME (ms)
Max: 0.6 G's
Tmax: 13.3 ms
Min: -1.5 G's
Tmin: 42.8 ms
CFC 180

6YR OLD PASSENGER CHEST Z (G's) vs TIME (ms)
Max: 2.7 G's
Tmax: 11.8 ms
Min: -5.5 G's
Tmin: 22.7 ms
CFC 180

6YR OLD PASSENGER CHEST Resultant (G's) vs TIME (ms)
Max: 10.4 G's
Tmax: 16.1 ms
Min: 0.0 G's
Tmin: 3.1 ms
CFC 180
LOW RISK DEPLOYMENT
2009 BMW 128i (C90514) (6YO P2)

Test Date: 4/23/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER CHEST X Velocity (kph) vs TIME (ms)
Max: -0.0 kph
Tmax: 7.4 ms
Min: -6.6 kph
Tmin: 100.0 ms
CFC 180

6YR OLD PASSENGER CHEST Y Velocity (kph) vs TIME (ms)
Max: 0.0 kph
Tmax: 14.5 ms
Min: -1.2 kph
Tmin: 100.0 ms
CFC 180

6YR OLD PASSENGER CHEST Z Velocity (kph) vs TIME (ms)
Max: 1.8 kph
Tmax: 100.0 ms
Min: -1.5 kph
Tmin: 48.8 ms
CFC 180

6YR OLD PASSENGER CHEST DISPLACEMENT (mm) vs TIME (ms)
Max: 0.2 mm
Tmax: 15.6 ms
Min: -1.6 mm
Tmin: 39.5 ms
CFC 600
Injury Values Calculated between 0ms and 100ms

FIRE VOLTAGE #1 (Volts) vs TIME (ms)
- Max: 15.9 Volts
- Tmax: 0.3 ms
- Min: -0.9 Volts
- Tmin: 10.3 ms
- CFC 1000

FIRE CURRENT #1 (Amps) vs TIME (ms)
- Max: 5.6 Amps
- Tmax: 0.3 ms
- Min: -0.0 Amps
- Tmin: 10.3 ms
- CFC 1000

FIRE VOLTAGE #2 (Volts) vs TIME (ms)
- Max: 0.0 Volts
- Tmax: 43.3 ms
- Min: -0.0 Volts
- Tmin: 1.0 ms
- CFC 1000

FIRE CURRENT #2 (Amps) vs TIME (ms)
- Max: 0.0 Amps
- Tmax: 26.2 ms
- Min: -0.0 Amps
- Tmin: 0.3 ms
- CFC 1000
APPENDIX C

CRASH TEST PHOTOGRAPHS

TABLE OF PHOTOGRAPHS

<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vehicle Certification Label</td>
<td>C-1</td>
</tr>
<tr>
<td>2</td>
<td>Tire Placard</td>
<td>C-2</td>
</tr>
<tr>
<td>3</td>
<td>Pre-Test Front View of Test Vehicle</td>
<td>C-3</td>
</tr>
<tr>
<td>4</td>
<td>Post-Test Front View of Test Vehicle</td>
<td>C-4</td>
</tr>
<tr>
<td>5</td>
<td>Pre-Test Left Side View of Test Vehicle</td>
<td>C-5</td>
</tr>
<tr>
<td>6</td>
<td>Post-Test Left Side View of Test Vehicle</td>
<td>C-6</td>
</tr>
<tr>
<td>7</td>
<td>Pre-Test Right Side View of Test Vehicle</td>
<td>C-7</td>
</tr>
<tr>
<td>8</td>
<td>Post-Test Right Side View of Test Vehicle</td>
<td>C-8</td>
</tr>
<tr>
<td>9</td>
<td>Pre-Test Left Front Three-Quarter View of Test Vehicle</td>
<td>C-9</td>
</tr>
<tr>
<td>10</td>
<td>Post-Test Left Front Three-Quarter View of Test Vehicle</td>
<td>C-10</td>
</tr>
<tr>
<td>11</td>
<td>Pre-Test Right Front Three-Quarter View of Test Vehicle</td>
<td>C-11</td>
</tr>
<tr>
<td>12</td>
<td>Post-Test Right Front Three-Quarter View of Test Vehicle</td>
<td>C-12</td>
</tr>
<tr>
<td>13</td>
<td>Pre-Test Right Rear Three-Quarter View of Test Vehicle</td>
<td>C-13</td>
</tr>
<tr>
<td>14</td>
<td>Post-Test Right Rear Three-Quarter View of Test Vehicle</td>
<td>C-14</td>
</tr>
<tr>
<td>15</td>
<td>Pre-Test Left Rear Three-Quarter View of Test Vehicle</td>
<td>C-15</td>
</tr>
<tr>
<td>16</td>
<td>Post-Test Left Rear Three-Quarter View of Test Vehicle</td>
<td>C-16</td>
</tr>
<tr>
<td>17</td>
<td>Pre-Test Rear View of Test Vehicle</td>
<td>C-17</td>
</tr>
<tr>
<td>18</td>
<td>Post-Test Rear View of Test Vehicle</td>
<td>C-18</td>
</tr>
<tr>
<td>19</td>
<td>Pre-Test Windshield View</td>
<td>C-19</td>
</tr>
<tr>
<td>20</td>
<td>Post-Test Windshield View</td>
<td>C-20</td>
</tr>
<tr>
<td>21</td>
<td>Pre-Test Engine Compartment View</td>
<td>C-21</td>
</tr>
<tr>
<td>22</td>
<td>Post-Test Engine Compartment View</td>
<td>C-22</td>
</tr>
<tr>
<td>23</td>
<td>Pre-Test Fuel Filler Cap View</td>
<td>C-23</td>
</tr>
<tr>
<td>24</td>
<td>Post-Test Fuel Filler Cap View</td>
<td>C-24</td>
</tr>
</tbody>
</table>
Photo No. 25. Pre-Test Front Underbody View C-25
Photo No. 26. Post-Test Front Underbody View C-26
Photo No. 27. Pre-Test Mid Underbody View C-27
Photo No. 28. Post-Test Mid Underbody View C-28
Photo No. 29. Pre-Test Rear Underbody View C-29
Photo No. 30. Post-Test Rear Underbody View C-30
Photo No. 31. Pre-Test Driver Dummy Front View (head position) C-31
Photo No. 32. Post-Test Driver Dummy Front View (head position) C-32
Photo No. 33. Pre-Test Driver Dummy Position Left Side View C-33
Photo No. 34. Post-Test Driver Dummy Position Left Side View C-34
Photo No. 35. Pre-Test Driver Dummy Position Left Side View (door open) C-35
Photo No. 36. Post-Test Driver Dummy Position Left Side View (door open) C-36
Photo No. 37. Pre-Test Driver Dummy Seat Position C-37
Photo No. 38. Post-Test Driver Dummy Seat Position C-38
Photo No. 39. Pre-Test Driver Dummy Feet Position C-39
Photo No. 40. Post-Test Driver Dummy Feet Position C-40
Photo No. 41. Pre-Test Driver Side Knee Bolster View C-41
Photo No. 42. Post-Test Driver Side Knee Bolster View C-42
Photo No. 43. Post-Test Driver Dummy Airbag Contact C-43
Photo No. 44. Post-Test Driver Dummy Head Contact (headrest) C-44
Photo No. 45. Post-Test Driver Dummy Knee Contact C-45
Photo No. 46. Pre-Test Passenger Dummy Front View (head position) C-46
Photo No. 47. Post-Test Passenger Dummy Front View (head position) C-47
Photo No. 48. Pre-Test Passenger Dummy Position Right Side View C-48
Photo No. 49. Post-Test Passenger Dummy Position Right Side View C-49
Photo No. 50. Pre-Test Passenger Dummy Position Right Side View (door open) C-50
Photo No. 51. Post-Test Passenger Dummy Position Right Side View (door open) C-51
Photo No. 52. Pre-Test Passenger Dummy Seat Position C-52
Photo No. 53. Post-Test Passenger Dummy Seat Position C-53
Photo No. 54. Pre-Test Passenger Dummy Feet Position C-54
Photo No. 55. Post-Test Passenger Dummy Feet Position C-55
Photo No. 56. Pre-Test Passenger Side Knee Bolster View C-56
Photo No. 57. Post-Test Passenger Side Knee Bolster View C-57
Photo No. 58. Post-Test Passenger Dummy Airbag Contact C-58
Photo No. 59. Post-Test Passenger Dummy Knee Contact C-59
Photo No. 60. Rollover 90 Degrees C-60
Photo No. 61. Rollover 180 Degrees C-61
Photo No. 62. Rollover 270 Degrees C-62
Photo No. 63. Rollover 360 Degrees C-63
Photo No. 64. Temperature Plot C-64
128i

MFD BY BAYERISCHE MOTORENWERKE 10/08

VEHICLE TYPE: PASSENGER CAR

GVWR 4134 lbs 1875 kg
GAWR FRONT 2028 lbs 920 kg REAR 2249 lbs 1020 kg

THIS VEHICLE CONFORMS TO ALL APPLICABLE U.S.
FEDERAL MOTOR VEHICLE SAFETY, BUMPER AND THEFT
PREVENTION STANDARDS IN EFFECT ON THE DATE OF
MANUFACTURE SHOWN ABOVE.

WBAUP73549VF06881
<table>
<thead>
<tr>
<th>TIRE / PNEU</th>
<th>SIZE DIMENSIONS</th>
<th>COLD TIRE PRESSURE</th>
<th>SEE OWNER’S MANUAL FOR ADDITIONAL INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONT / AVANT</td>
<td>205/50 R 17</td>
<td>220 KPA, 32 PSI</td>
<td>VOIR LE MANUAL DE L’USAGER POUR PLUS DE RENSEIGNEMENTS</td>
</tr>
<tr>
<td>REAR / ARRIERE</td>
<td>205/50 R 17</td>
<td>240 KPA, 35 PSI</td>
<td></td>
</tr>
<tr>
<td>SPARE DE RECHANGE</td>
<td>NONE</td>
<td>NONE KPA, NONE PSI</td>
<td></td>
</tr>
</tbody>
</table>
Pre-Test Front View of Test Vehicle
Pre-Test Left Side View of Test Vehicle
Pre-Test Right Side View of Test Vehicle
Pre-Test Right Front Three-Quarter View of Test Vehicle
Post-Test Right Front Three-Quarter View of Test Vehicle
Pre-Test Right Rear Three-Quarter View of Test Vehicle
Post-Test Left Rear Three-Quarter View of Test Vehicle
Post-Test Rear View of Test Vehicle
Post-Test Engine Compartment View
Pre-Test Fuel Filler Cap View
Post-Test Fuel Filler Cap View
Pre-Test Front Underbody View
Post-Test Front Underbody View
Post-Test Mid Underbody View
Pre-Test Driver Dummy Front View (head position)
Pre-Test Driver Dummy Position Left Side View
Post-Test Driver Dummy Position Left Side View
Pre-Test Driver Dummy Position Left Side View (door open)
Post-Test Driver Dummy Position Left Side View (door open)
37

Pre-Test Driver Dummy Seat Position
POST-TEST

C90514
25 MPH FRONTAL
09050801
2009 BMW 128i

Post-Test Driver Dummy Seat Position
Pre-Test Driver Dummy Feet Position
Post-Test Driver Dummy Feet Position
Pre-Test Driver Side Knee Bolster View
Post-Test Driver Side Knee Bolster View
Post-Test Driver Dummy Airbag Contact
Post-Test Driver Dummy Head Contact (headrest)
Post-Test Driver Dummy Knee Contact
Pre-Test Passenger Dummy Front View (head position)
Post-Test Passenger Dummy Front View (head position)
Pre-Test Passenger Dummy Position Right Side View
Pre-Test Passenger Dummy Position Right Side View (door open)
Post-Test Passenger Dummy Position Right Side View (door open)
Pre-Test Passenger Dummy Seat Position
Post-Test Passenger Dummy Seat Position
Pre-Test Passenger Dummy Feet Position
Post-Test Passenger Dummy Feet Position
Pre-Test Passenger Side Knee Bolster View
Post-Test Passenger Side Knee Bolster View
Post-Test Passenger Dummy Airbag Contact
Post-Test Passenger Dummy Knee Contact
Rollover 180 Degrees
Rollover 270 Degrees
<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pre-Test 5<sup>th</sup> Fem. P1 Driver Dummy Left Side View</td>
<td>D-1</td>
</tr>
<tr>
<td>2</td>
<td>Post-Test 5<sup>th</sup> Fem. P1 Driver Dummy Left Side View</td>
<td>D-2</td>
</tr>
<tr>
<td>3</td>
<td>Pre-Test 5<sup>th</sup> Fem. P1 Driver Dummy Right Side View</td>
<td>D-3</td>
</tr>
<tr>
<td>4</td>
<td>Post-Test 5<sup>th</sup> Fem. P1 Driver Dummy Right Side View</td>
<td>D-4</td>
</tr>
<tr>
<td>5</td>
<td>Post-Test 5<sup>th</sup> Fem. P1 Driver Dummy Airbag Left Side View</td>
<td>D-5</td>
</tr>
<tr>
<td>6</td>
<td>Post-Test 5<sup>th</sup> Fem. P1 Driver Dummy Head Contact (headrest)</td>
<td>D-6</td>
</tr>
<tr>
<td>7</td>
<td>Pre-Test 5<sup>th</sup> Fem. P2 Driver Dummy Left Side View</td>
<td>D-7</td>
</tr>
<tr>
<td>8</td>
<td>Post-Test 5<sup>th</sup> Fem. P2 Driver Dummy Left Side View</td>
<td>D-8</td>
</tr>
<tr>
<td>9</td>
<td>Pre-Test 5<sup>th</sup> Fem. P2 Driver Dummy Right Side View</td>
<td>D-9</td>
</tr>
<tr>
<td>10</td>
<td>Post-Test 5<sup>th</sup> Fem. P2 Driver Dummy Right Side View</td>
<td>D-10</td>
</tr>
<tr>
<td>11</td>
<td>Pre-Test 3YO P1 Passenger Dummy Left Side View</td>
<td>D-11</td>
</tr>
<tr>
<td>12</td>
<td>Post-Test 3YO P1 Passenger Dummy Left Side View</td>
<td>D-12</td>
</tr>
<tr>
<td>13</td>
<td>Pre-Test 3YO P1 Passenger Dummy Right Side View</td>
<td>D-13</td>
</tr>
<tr>
<td>14</td>
<td>Post-Test 3YO P1 Passenger Dummy Right Side View</td>
<td>D-14</td>
</tr>
<tr>
<td>15</td>
<td>Post-Test 3YO P1 Passenger Dummy Airbag Right Side View</td>
<td>D-15</td>
</tr>
<tr>
<td>16</td>
<td>Pre-Test 3YO P2 Passenger Dummy Left Side View</td>
<td>D-16</td>
</tr>
<tr>
<td>17</td>
<td>Post-Test 3YO P2 Passenger Dummy Left Side View</td>
<td>D-17</td>
</tr>
<tr>
<td>18</td>
<td>Pre-Test 3YO P2 Passenger Dummy Right Side View</td>
<td>D-18</td>
</tr>
<tr>
<td>19</td>
<td>Post-Test 3YO P2 Passenger Dummy Right Side View</td>
<td>D-19</td>
</tr>
<tr>
<td>20</td>
<td>Post-Test 3YO P2 Passenger Dummy Head Contact (seatback)</td>
<td>D-20</td>
</tr>
<tr>
<td>21</td>
<td>Pre-Test 6YO P1 Passenger Dummy Left Side View</td>
<td>D-21</td>
</tr>
<tr>
<td>22</td>
<td>Post-Test 6YO P1 Passenger Dummy Left Side View</td>
<td>D-22</td>
</tr>
<tr>
<td>23</td>
<td>Pre-Test 6YO P1 Passenger Dummy Right Side View</td>
<td>D-23</td>
</tr>
<tr>
<td>24</td>
<td>Post-Test 6YO P1 Passenger Dummy Right Side View</td>
<td>D-24</td>
</tr>
<tr>
<td>25</td>
<td>Post-Test 6YO P1 Passenger Dummy Airbag Right Side View</td>
<td>D-25</td>
</tr>
<tr>
<td>26</td>
<td>Post-Test 6YO P1 Passenger Dummy Head Contact (seat)</td>
<td>D-26</td>
</tr>
</tbody>
</table>
Photo No. 27. Pre-Test 6YO P2 Passenger Dummy Left Side View D-27
Photo No. 28. Post-Test 6YO P2 Passenger Dummy Left Side View D-28
Photo No. 29. Pre-Test 6YO P2 Passenger Dummy Right Side View D-29
Photo No. 30. Post-Test 6YO P2 Passenger Dummy Right Side View D-30
Photo No. 31. Post-Test 6YO P2 Passenger Dummy Airbag Right Side View D-31
Post-Test 5th Fem. P1 Driver Dummy Left Side View
Post-Test 5th Fem. P1 Driver Dummy Head Contact (headrest)
Pre-Test 5th Fem. P2 Driver Dummy Left Side View
Post-Test 3YO P1 Passenger Dummy Left Side View
Post-Test 3YO P1 Passenger Dummy Airbag Right Side View
Pre-Test 3YO P2 Passenger Dummy Left Side View
Post-Test 3YO P2 Passenger Dummy Left Side View
Post-Test 3YO P2 Passenger Dummy Head Contact (seatback)
Pre-Test 6YO P1 Passenger Dummy Left Side View
Post-Test 6YO P1 Passenger Dummy Head Contact (seat)
Post-Test 6YO P2 Passenger Dummy Left Side View
Pre-Test 6YO P2 Passenger Dummy Right Side View
Post-Test 6YO P2 Passenger Dummy Airbag Right Side View
APPENDIX E

SUPPRESSION PHOTOGRAPHS

TABLE OF PHOTOGRAPHS

<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Description</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo No. 1.</td>
<td>Cosco Dream Ride Car Bed Belted, Forward Seat Track</td>
<td>E-1</td>
</tr>
<tr>
<td>Photo No. 2.</td>
<td>Cosco Dream Ride Car Bed Belted, Middle Seat Track</td>
<td>E-1</td>
</tr>
<tr>
<td>Photo No. 3.</td>
<td>Cosco Dream Ride Car Bed Belted, Rearward Seat Track</td>
<td>E-1</td>
</tr>
<tr>
<td>Photo No. 4.</td>
<td>Unbelted 5th Percentile Female Reactivation, Forward Seat Track</td>
<td>E-1</td>
</tr>
<tr>
<td>Photo No. 5.</td>
<td>Britax Handle With Care 191 Belted, Forward Seat Track</td>
<td>E-2</td>
</tr>
<tr>
<td>Photo No. 6.</td>
<td>Britax Handle With Care 191 Belted, Middle Seat Track</td>
<td>E-2</td>
</tr>
<tr>
<td>Photo No. 7.</td>
<td>Britax Handle With Care 191 Belted, Rearward Seat Track</td>
<td>E-2</td>
</tr>
<tr>
<td>Photo No. 8.</td>
<td>Britax Handle With Care 191 Unbelted, Forward Seat Track</td>
<td>E-2</td>
</tr>
<tr>
<td>Photo No. 9.</td>
<td>Britax Handle With Care 191 Unbelted, Middle Seat Track</td>
<td>E-3</td>
</tr>
<tr>
<td>Photo No. 10.</td>
<td>Britax Handle With Care 191 Unbelted, Rearward Seat Track</td>
<td>E-3</td>
</tr>
<tr>
<td>Photo No. 11.</td>
<td>Britax Handle With Care 191 Forward Facing Unbelted, Forward Seat Track</td>
<td>E-3</td>
</tr>
<tr>
<td>Photo No. 12.</td>
<td>Britax Handle With Care 191 Forward Facing Unbelted, Middle Seat Track</td>
<td>E-3</td>
</tr>
<tr>
<td>Photo No. 13.</td>
<td>Britax Handle With Care 191 Forward Facing Unbelted, Rearward Seat Track</td>
<td>E-4</td>
</tr>
<tr>
<td>Photo No. 14.</td>
<td>Unbelted 5th Percentile Female Reactivation, Rearward Seat Track</td>
<td>E-4</td>
</tr>
<tr>
<td>Photo No. 15.</td>
<td>Evenflo First Choice 204 Belted, Forward Seat Track</td>
<td>E-5</td>
</tr>
<tr>
<td>Photo No. 16.</td>
<td>Evenflo First Choice 204 Belted, Middle Seat Track</td>
<td>E-5</td>
</tr>
<tr>
<td>Photo No. 17.</td>
<td>Evenflo First Choice 204 Belted, Rearward Seat Track</td>
<td>E-5</td>
</tr>
<tr>
<td>Photo No. 18.</td>
<td>Evenflo First Choice 204 Unbelted, Middle Seat Track</td>
<td>E-5</td>
</tr>
<tr>
<td>Photo No. 19.</td>
<td>Evenflo First Choice 204 Unbelted, Rearward Seat Track</td>
<td>E-6</td>
</tr>
<tr>
<td>Photo No. 20.</td>
<td>Evenflo First Choice 204 Forward Facing Unbelted, Forward Seat Track</td>
<td>E-6</td>
</tr>
<tr>
<td>Photo No. 21.</td>
<td>Evenflo First Choice 204 Forward Facing Unbelted, Middle Seat Track</td>
<td>E-6</td>
</tr>
<tr>
<td>Photo No. 22.</td>
<td>Evenflo First Choice 204 Forward Facing Unbelted, Rearward Seat Track</td>
<td>E-6</td>
</tr>
<tr>
<td>Photo No. 23.</td>
<td>Unbelted 5th Percentile Female Reactivation, Middle Seat Track</td>
<td>E-7</td>
</tr>
<tr>
<td>Photo No. 24.</td>
<td>Graco Infant W/ Base Belted, Forward Seat Track</td>
<td>E-8</td>
</tr>
<tr>
<td>Photo No. 25.</td>
<td>Graco Infant W/ Base Belted, Middle Seat Track</td>
<td>E-8</td>
</tr>
<tr>
<td>Photo No. 26.</td>
<td>Graco Infant W/ Base Belted, Rearward Seat Track</td>
<td>E-8</td>
</tr>
<tr>
<td>Photo No. 27.</td>
<td>Graco Infant W/ Base Unbelted, Forward Seat Track</td>
<td>E-8</td>
</tr>
<tr>
<td>Photo No. 28.</td>
<td>Graco Infant W/ Base Unbelted, Middle Seat Track</td>
<td>E-9</td>
</tr>
<tr>
<td>Photo No. 29.</td>
<td>Graco Infant W/ Base Unbelted, Rearward Seat Track</td>
<td>E-9</td>
</tr>
<tr>
<td>Photo No. 30.</td>
<td>Graco Infant W/ Base Forward Facing Unbelted, Forward Seat Track</td>
<td>E-9</td>
</tr>
<tr>
<td>Photo No. 31.</td>
<td>Graco Infant W/ Base Forward Facing Unbelted, Middle Seat Track</td>
<td>E-9</td>
</tr>
<tr>
<td>Photo No.</td>
<td>Description</td>
<td>Page #</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>32</td>
<td>Graco Infant W/ Base Forward Facing Unbelted, Rearward Seat Track</td>
<td>E-10</td>
</tr>
<tr>
<td>33</td>
<td>Graco Infant W/O Base Belted, Forward Seat Track</td>
<td>E-10</td>
</tr>
<tr>
<td>34</td>
<td>Graco Infant W/O Base Belted, Middle Seat Track</td>
<td>E-10</td>
</tr>
<tr>
<td>35</td>
<td>Graco Infant W/O Base Belted, Rearward Seat Track</td>
<td>E-10</td>
</tr>
<tr>
<td>36</td>
<td>Graco Infant W/O Base Unbelted, Middle Seat Track</td>
<td>E-11</td>
</tr>
<tr>
<td>37</td>
<td>Graco Infant W/O Base Unbelted, Rearward Seat Track</td>
<td>E-11</td>
</tr>
<tr>
<td>38</td>
<td>Graco Infant W/O Base Forward Facing Unbelted, Forward Seat Track</td>
<td>E-11</td>
</tr>
<tr>
<td>39</td>
<td>Graco Infant W/O Base Forward Facing Unbelted, Middle Seat Track</td>
<td>E-11</td>
</tr>
<tr>
<td>40</td>
<td>Graco Infant W/O Base Forward Facing Unbelted, Rearward Seat Track</td>
<td>E-11</td>
</tr>
<tr>
<td>41</td>
<td>Unbelted 5th Percentile Female Reactivation, Rearward Seat Track</td>
<td>E-12</td>
</tr>
<tr>
<td>42</td>
<td>Britax Roundabout 161 Forward Facing Belted, Forward Seat Track</td>
<td>E-13</td>
</tr>
<tr>
<td>43</td>
<td>Britax Roundabout 161 Forward Facing Belted, Middle Seat Track</td>
<td>E-13</td>
</tr>
<tr>
<td>44</td>
<td>Britax Roundabout 161 Forward Facing Belted, Rearward Seat Track</td>
<td>E-13</td>
</tr>
<tr>
<td>45</td>
<td>Britax Roundabout 161 Forward Facing Unbelted, Forward Seat Track</td>
<td>E-13</td>
</tr>
<tr>
<td>46</td>
<td>Britax Roundabout 161 Forward Facing Unbelted, Middle Seat Track</td>
<td>E-14</td>
</tr>
<tr>
<td>47</td>
<td>Britax Roundabout 161 Forward Facing Unbelted, Rearward Seat Track</td>
<td>E-14</td>
</tr>
<tr>
<td>48</td>
<td>Britax Roundabout 161 Rear Facing Belted, Forward Seat Track</td>
<td>E-14</td>
</tr>
<tr>
<td>49</td>
<td>Britax Roundabout 161 Rear Facing Belted, Middle Seat Track</td>
<td>E-14</td>
</tr>
<tr>
<td>50</td>
<td>Britax Roundabout 161 Rear Facing Belted, Rearward Seat Track</td>
<td>E-15</td>
</tr>
<tr>
<td>51</td>
<td>Britax Roundabout 161 Rear Facing Unbelted, Forward Seat Track</td>
<td>E-15</td>
</tr>
<tr>
<td>52</td>
<td>Britax Roundabout 161 Rear Facing Unbelted, Middle Seat Track</td>
<td>E-15</td>
</tr>
<tr>
<td>53</td>
<td>Britax Roundabout 161 Rear Facing Unbelted, Rearward Seat Track</td>
<td>E-15</td>
</tr>
<tr>
<td>54</td>
<td>Unbelted 5th Percentile Female Reactivation, Forward Seat Track</td>
<td>E-16</td>
</tr>
<tr>
<td>55</td>
<td>Century Encore Forward Facing Belted, Forward Seat Track</td>
<td>E-17</td>
</tr>
<tr>
<td>56</td>
<td>Century Encore Forward Facing Belted, Middle Seat Track</td>
<td>E-17</td>
</tr>
<tr>
<td>57</td>
<td>Century Encore Forward Facing Belted, Rearward Seat Track</td>
<td>E-17</td>
</tr>
<tr>
<td>58</td>
<td>Century Encore Forward Facing Unbelted, Forward Seat Track</td>
<td>E-17</td>
</tr>
<tr>
<td>59</td>
<td>Century Encore Forward Facing Unbelted, Middle Seat Track</td>
<td>E-18</td>
</tr>
<tr>
<td>60</td>
<td>Century Encore Forward Facing Unbelted, Rearward Seat Track</td>
<td>E-18</td>
</tr>
<tr>
<td>61</td>
<td>Century Encore Rear Facing Belted, Forward Seat Track</td>
<td>E-18</td>
</tr>
<tr>
<td>62</td>
<td>Century Encore Rear Facing Belted, Middle Seat Track</td>
<td>E-18</td>
</tr>
<tr>
<td>63</td>
<td>Century Encore Rear Facing Belted, Rearward Seat Track</td>
<td>E-19</td>
</tr>
<tr>
<td>64</td>
<td>Century Encore Rear Facing Unbelted, Forward Seat Track</td>
<td>E-19</td>
</tr>
<tr>
<td>65</td>
<td>Century Encore Rear Facing Unbelted, Middle Seat Track</td>
<td>E-19</td>
</tr>
<tr>
<td>66</td>
<td>Century Encore Rear Facing Unbelted, Rearward Seat Track</td>
<td>E-19</td>
</tr>
<tr>
<td>Photo No.</td>
<td>Description</td>
<td>Page #</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>67</td>
<td>Unbelted 5th Percentile Female Reactivation, Forward Seat Track</td>
<td>E-20</td>
</tr>
<tr>
<td>68</td>
<td>Evenflo Medallion 254 Forward Facing Belted, Forward Seat Track</td>
<td>E-21</td>
</tr>
<tr>
<td>69</td>
<td>Evenflo Medallion 254 Forward Facing Belted, Middle Seat Track</td>
<td>E-21</td>
</tr>
<tr>
<td>70</td>
<td>Evenflo Medallion 254 Forward Facing Belted, Rearward Seat Track</td>
<td>E-21</td>
</tr>
<tr>
<td>71</td>
<td>Evenflo Medallion 254 Forward Facing Unbelted, Forward Seat Track</td>
<td>E-21</td>
</tr>
<tr>
<td>72</td>
<td>Evenflo Medallion 254 Forward Facing Unbelted, Middle Seat Track</td>
<td>E-22</td>
</tr>
<tr>
<td>73</td>
<td>Evenflo Medallion 254 Forward Facing Unbelted, Rearward Seat Track</td>
<td>E-22</td>
</tr>
<tr>
<td>74</td>
<td>Evenflo Medallion 254 Rear Facing Belted, Forward Seat Track</td>
<td>E-22</td>
</tr>
<tr>
<td>75</td>
<td>Evenflo Medallion 254 Rear Facing Belted, Middle Seat Track</td>
<td>E-22</td>
</tr>
<tr>
<td>76</td>
<td>Evenflo Medallion 254 Rear Facing Belted, Rearward Seat Track</td>
<td>E-23</td>
</tr>
<tr>
<td>77</td>
<td>Evenflo Medallion 254 Rear Facing Unbelted, Forward Seat Track</td>
<td>E-23</td>
</tr>
<tr>
<td>78</td>
<td>Evenflo Medallion 254 Rear Facing Unbelted, Middle Seat Track</td>
<td>E-23</td>
</tr>
<tr>
<td>79</td>
<td>Evenflo Medallion 254 Rear Facing Unbelted, Rearward Seat Track</td>
<td>E-23</td>
</tr>
<tr>
<td>80</td>
<td>Unbelted 5th Percentile Female Reactivation, Middle Seat Track</td>
<td>E-24</td>
</tr>
</tbody>
</table>
Section B

Rear Facing CRS
Unbelted 5th Percentile Female Reactivation, Middle Seat Track
Graco Infant W Base Unbelted, Rearward Seat Track
Graco Infant W Base Forward Facing Unbelted, Rearward Seat Track
Graco Infant W Base Forward Facing Unbelted, Middle Seat Track
Graco Infant W Base Unbelted, Middle Seat Track

Section B

Rear Facing CRS

E-9
DOT/NHTSA 208 Suppression Test - 2009 BMW 128i (C90514)
12 Month Section B Rear Facing CRS

Graco Infant W Base Forward Facing Unbelted, Rearward Seat Track
Graco Infant WO Base Belted, Forward Seat Track
Graco Infant WO Base Belted, Middle Seat Track
Graco Infant WO Base Belted, Rearward Seat Track
Unbelted 5th Percentile Female Reactivation, Forward Seat Track
DOT/NHTSA 208 Suppression Test - 2009 BMW 128i (C90514)

Section C

Forward Facing Convertible CRS

Evenflo Medallion 254 Forward Facing Unbelted, Rearward Seat Track
Evenflo Medallion 254 Rear Facing Belted, Forward Seat Track

E-22
Unbelted 5th Percentile Female Reactivation, Middle Seat Track

Forward Facing Convertible CRS

DOT/NHTSA 208 Suppression Test - 2009 BMW 128i (C90514)
12 Month

Section C
APPENDIX F

INSTRUMENTATION CALIBRATION

INSTRUMENTS FOR DRIVER DUMMY NO.: 124

<table>
<thead>
<tr>
<th>SERIAL NO.</th>
<th>MANUFACTURER</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head X</td>
<td>P47086</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Y</td>
<td>P52220</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Z</td>
<td>P47087</td>
<td>Endevco</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>1562</td>
<td>Denton</td>
</tr>
<tr>
<td>Chest X</td>
<td>P52165</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Y</td>
<td>P59305</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Z</td>
<td>P59280</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>124</td>
<td>Servo</td>
</tr>
<tr>
<td>Left Femur Load Cell</td>
<td>932</td>
<td>GSE</td>
</tr>
<tr>
<td>Right Femur Load Cell</td>
<td>150</td>
<td>GSE</td>
</tr>
</tbody>
</table>

INSTRUMENTS FOR PASSENGER DUMMY NO.: 125

<table>
<thead>
<tr>
<th>SERIAL NO.</th>
<th>MANUFACTURER</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head X</td>
<td>P59258</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Y</td>
<td>P59259</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Z</td>
<td>P59260</td>
<td>Endevco</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>2146</td>
<td>Denton</td>
</tr>
<tr>
<td>Chest X</td>
<td>P49225</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Y</td>
<td>P49490</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Z</td>
<td>P49487</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>125</td>
<td>Servo</td>
</tr>
<tr>
<td>Left Femur Load Cell</td>
<td>1360</td>
<td>Denton</td>
</tr>
<tr>
<td>Right Femur Load Cell</td>
<td>1359</td>
<td>Denton</td>
</tr>
</tbody>
</table>
INSTRUMENTS FOR LOW RISK 5TH FEMALE DUMMY NO.: 124 (P1 & P2)

<table>
<thead>
<tr>
<th>SERIAL NO.</th>
<th>MANUFACTURER</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head X</td>
<td>P47086</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Y</td>
<td>P52220</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Z</td>
<td>P47087</td>
<td>Endevco</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>1562</td>
<td>Denton</td>
</tr>
<tr>
<td>Chest X</td>
<td>P52165</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Y</td>
<td>P59305</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Z</td>
<td>P59280</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>124</td>
<td>Servo</td>
</tr>
<tr>
<td>Left Femur Load Cell</td>
<td>932</td>
<td>GSE</td>
</tr>
<tr>
<td>Right Femur Load Cell</td>
<td>150</td>
<td>GSE</td>
</tr>
</tbody>
</table>

INSTRUMENTS FOR LOW RISK 3 YEAR OLD DUMMY NO.: 032 (P1 & P2)

<table>
<thead>
<tr>
<th>SERIAL NO.</th>
<th>MANUFACTURER</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head X</td>
<td>P49481</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Y</td>
<td>P52134</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Z</td>
<td>P52145</td>
<td>Endevco</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>233</td>
<td>Denton</td>
</tr>
<tr>
<td>Chest X</td>
<td>P52172</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Y</td>
<td>P52173</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Z</td>
<td>P52174</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>032</td>
<td>Servo</td>
</tr>
</tbody>
</table>
INSTRUMENTS FOR LOW RISK 6 YEAR OLD DUMMY NO.: 155 (P1 & P2)

<table>
<thead>
<tr>
<th>SERIAL NO.</th>
<th>MANUFACTURER</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head X</td>
<td>P59397</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Y</td>
<td>P59398</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Z</td>
<td>P59399</td>
<td>Endevco</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>376</td>
<td>Denton</td>
</tr>
<tr>
<td>Chest X</td>
<td>P49510</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Y</td>
<td>P49511</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Z</td>
<td>P49518</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>155</td>
<td>Servo</td>
</tr>
</tbody>
</table>

VEHICLE INSTRUMENTS

<table>
<thead>
<tr>
<th>SERIAL NO.</th>
<th>MANUFACTURER</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Rear Seat Crossmember X</td>
<td>D12-X20</td>
<td>Entran</td>
</tr>
<tr>
<td>Right Rear Seat Crossmember X</td>
<td>J26-H16</td>
<td>Entran</td>
</tr>
<tr>
<td>Top of Engine X</td>
<td>A29-M05</td>
<td>Entran</td>
</tr>
<tr>
<td>Bottom of Engine X</td>
<td>F17-Y02</td>
<td>Entran</td>
</tr>
<tr>
<td>Left Brake Caliper X</td>
<td>C24-L04</td>
<td>Entran</td>
</tr>
<tr>
<td>Right Brake Caliper X</td>
<td>C09-Y09</td>
<td>Entran</td>
</tr>
<tr>
<td>Instrument Panel X</td>
<td>H11-L04</td>
<td>Entran</td>
</tr>
<tr>
<td>Trunk Z</td>
<td>A28-H02</td>
<td>Entran</td>
</tr>
</tbody>
</table>
APPENDIX G

NOTICE OF TEST FAILURE
LABORATORY NOTICE OF APPARENT TEST FAILURE TO OVSC

FMVSS NO. 208 TEST DATE: 3/12/09
LABORATORY: MGA Research Corporation
CONTRACT NO.: DTNH22-08-D-00086 DELV. ORDER NO.: _______________
LABORATORY PROJECT ENGINEER'S NAME: Jeff Lewandowski
TEST SPECIMEN DESCRIPTION: 2009 BMW 128i Coupe, Passenger Car
VEHICLE NHTSA NO.: C90514 VIN: WBAUP73549VF06881
MFR: Bayerische Motorenwerke

APPARENT TEST FAILURE DESCRIPTION:
TP208-14 Data Sheet 5: 3.5; The sun visor airbag warning label has an area of 27.7 cm².

FMVSS REQUIREMENT, PARAGRAPHS:
(S4.5.1(b)(3)(ii)) The message area shall be white with black text. The message area shall be no less than 30 cm² (4.7 in²).

NOTIFICATION TO NHTSA (COTR): Brian Smith
DATE: 3/13/09 BY: Alyssa Paul
REMARKS: See attached photo of the label.

Overall Area = large area to the right of the pictogram + small area above pictogram
= 36*69 + 7*41 = 2771 mm² or 27.71 cm²